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Abstract

Our interest in this paper is on the choice of spatial and categorical scale, and their interaction, in creating classifications of land cover

from remotely sensed measurements. We note that in discussing categorical scale, the concept of spatial scale naturally arises, and in

discussing spatial scale, the issue of aggregation of measurements must be considered. Therefore, and working towards an ultimate goal of

producing multiscale, multigranular characterizations of land cover, we address here successively and in a cumulative fashion the topics of

(1) aggregation of measurements across multiple scales, (2) adaptive choice of spatial scale, and (3) adaptive choice of categorical scale

jointly with spatial scale. We show that the use of statistical finite mixture models with groups of original pixel-scale measurements, at

successive spatial scales, offers improved pixel-wise classification accuracy as compared to the commonly used technique of label

aggregation. We then show how a statistical model selection strategy may be used with the finite mixture models to provide a data-adaptive

choice of spatial scale, varying by location (i.e., multiscale), from which classifications at least as accurate as those of any single spatial scale

may be achieved. Finally, we extend this paradigm to allow for jointly adaptive selection of spatial and categorical scale. Our emphasis

throughout is on the empirical quantification of the role of the various elements above, and a comparison of their performance with standard

methods, using various artificial landscapes. The methods proposed in this paper should be useful for a variety of scale-related land cover

classification tasks.
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1. Introduction

1.1. dScaleT in land cover classification

Remote sensing land cover classification is essential for a

variety of tasks, such as land resource management or the

retrieval of biophysical parameters of land cover, like leaf

area index, albedo and surface roughness. Choice of spatial

scale and categorical scale are two of the central issues in

remote sensing land cover classification. The use of the term
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dspatial scaleT in this context is mostly concerned with the

manner in which the image information content is deter-

mined by its spatial resolution and with the way that spatial

resolution is handled in the image processing stages, with

respect to land cover patches of varying size and shape. The

term dcategorical scaleT (also called dcategorical resolutionT
by other authors) refers to the level of detail in the categories

used in classification (e.g., Franklin & Woodcock, 1997),

and is often discussed with reference to a categorical

hierarchy. For example, a land cover category such as

forest in a regional classification system has a coarser

categorical scale than a conifer or hardwood category.

Numerous studies have examined the effect of spatial scale

on classification accuracy (e.g., Irons et al., 1985; Marceau

et al., 1994b; Markham & Townshend, 1981; Raptis et al.,
ent 96 (2005) 62–77
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2003). Categorical scale has been, in comparison, examined

to a lesser extent.

The dominant paradigm in land cover classification, for

most of its history, has been that of classification at a single

spatial scale and a single categorical scale (i.e., with category

labels from only one level of a potential categorical

hierarchy). However, increasingly the nature of current

applications demands that land cover classification be

conducted at multiple spatial scales and, potentially, at

multiple categorical scales. That is, there is growing need

for methods of land cover classification that are both

dmultiscaleT—in the sense of being able to incorporate

information across multiple spatial scales in constructing a

map–and also dmultigranularT—in the sense that class labels

of different granularity, or categorical scale, similarly co-exist

in the same map.

Earlier studies on the effects of scale on remote sensing

land cover classification sought a single doptimalT spatial

scale for classification (e.g., Irons et al., 1985; Markham &

Townshend, 1981). However, it was shown that in fact a

single doptimalT scale cannot accurately represent all classes

in a complex scene, due to the contrasting sizes, shapes, and

internal variation of the patches for different land cover

classes (e.g., Marceau et al., 1994a, 1994b; Raptis et al.,

2003). As a result, recent research has emphasized the

development of multiscale classification tools. The wide

variety of methods proposed for dmultiscaleT classification
in remote sensing, and in the imaging and computer vision

communities more widely, are of course too numerous to be

cited here in any significant detail. Instead, it is more useful

for our purposes to remark that, broadly speaking, at the

heart of these methods, their multiscale nature tends to rest

on the adoption of either of two paradigms: (i) aggregation,

or (ii) wavelet transformations.

The traditional practice of aggregating measurement

information, from an initial fine scale to successively

coarser scales, is arguably at the center of a large fraction

of proposed methods of multiscale analysis in remote

sensing. This practice includes two principle variations.

The first involves the explicit aggregation of spectral

measurements, through simple or weighted averaging on

moving windows. The second involves the implicit aggre-

gation of the information in these measurements by instead

aggregating to coarser spatial scales the class labels assigned

by a classifier of choice to pixels at the finest spatial scale.

We refer to these two variations as spectral and label

aggregation, respectively. The approach of label aggregation

is more widely used (e.g., Moody & Woodcock, 1994; Wu

& David, 2002), likely because spectral aggregation requires

that a classifier be trained at each scale, a non-trivial task.

The units of aggregation in these approaches typically are

the cells in successively coarser uniform grids over the

image region, which can induce a number of problems. For

example, the resulting land cover maps themselves can end

up looking blocky. In addition, since the block boundaries

are artificially configured and most likely do not match
patch boundaries in the scene, artifacts can result (Barnsley

et al., 1997). Moreover, in the conventional method of label

aggregation, error in the original per-pixel classification,

whose accuracy is typically around 70%, is inherited and

integrated into the classifications at coarser scales (Foody,

2002; Gurney, 1983). More sophisticated implementations

of the aggregation principle make use of texture and context

information at multiple spatial resolutions (e.g., Gong &

Howarth, 1992), to exploit spatial variation in the image, but

still suffer from limitations imposed by the underlying

system of grids. A particularly simple, but widely used, ad

hoc way of contextual classification is post-classification

relabeling with an odd-sized moving window filter (Gurney,

1983).

Complementing the methods based on aggregation are

image classification methods based on the mathematical tool

of wavelet analysis (e.g., Bouman & Shapiro, 1994; Choi &

Baraniuk, 2001; Sveinsson et al., 1998). In such approaches

a transformation(s) of the original measurements is com-

puted, by convolving the measurements with a scale-

indexed sequence of wavelet-based filters. These filters

have the property of enhancing the information in the data

local to a range of combinations of spatial scale and

position. They also are designed in such a way that, upon

the application of statistical analysis procedures and

classifiers, the resulting maps in the original image space

tend to suffer notably less from the types of artifacts

experienced by aggregation methods. However, because the

use of wavelet transformations in more than two dimensions

quickly becomes prohibitive from a computational perspec-

tive, it is not typically the case that multi-spectral remote

sensing measurements are analyzed as a unit. Rather, two-

dimensional wavelet transforms are applied either to some

transformation of the spectra into scalar quantities or to the

data in each spectral band separately.

In addition to the explicit use of aggregation or wavelets,

multiple scales can arise in land cover classification

methods implicitly as well, such as when incorporating

certain image segmentation techniques. Segmentation tech-

niques based on region-growing principles, for example,

dgrowT candidate landscape patches in a scale-adaptive

manner. Such methods have been found in many cases to be

superior to simple per-pixel approaches to classification

(e.g., Barlow et al., 2003; Tilton, 1998). However, when the

within-class spectral variation is high, the use of certain

segmentation techniques has been found to be less

appropriate, as it does not increase classification accuracy

(e.g., Stuckens et al., 2000). Image segmentation techniques

based on quad-trees, a popular data structure, also share the

sensitivity of the aggregation techniques due to the use of

block-like spatial regions.

On a side note, we mention that of course there is also

recent work on the dfusionT of data for the same spatial

region from instruments of different spatial resolutions (e.g.,

Cohen et al., 2003). However, since these methods often

incorporate the same sort of multiscale structures described
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for single-instrument measurements above, combined in

some sort of coherent fashion, we shall focus our attention

here on the single-instrument case.

Regardless of the manner in which multiple spatial scales

are incorporated into a land cover classification framework,

there remains the important issue of choosing an appropriate

categorical scale to be used in assigning labels to pixels.

This issue arises through the simple fact that, as spatial scale

increases beyond certain points (relative to the patch sizes,

positions, and shapes in the underlying landscape), labels of

increasingly coarser categorical scale become viable, due to

correspondingly increased levels of mixing. In fact, most

multiscale approaches use labels from only one level of

categorical scale, i.e., they are categorically monoscale (or

dmonogranularT). A few studies that do incorporate multiple

scales of class labels with multiple spatial scales do so

simply by lumping classes into more general classes as the

spatial scale gets coarser (e.g., Marceau et al., 1994b).

However, such lumping of categories on a global basis can

lead to considerable loss of categorical information for a

large area where only one specific class is present. This

practice is typical in the use of a hierarchical land cover/use

classification system like that described in Anderson et al.

(1976), in which the categorical scale and spatial scale are

not explicitly connected.

Recently, more sophisticated approaches have sought to

link the use of coarser class labels adaptively with certain

relevant aspects of the coarser regions to which they might

be applied. For example, the method of Tilton (1998)

incorporates the labeling of regions directly within the

overall process of growing regions, in extending classical

region-growing segmentation methods. Alternatively, Wu

and David (2002) have developed a systems-level paradigm

for modeling complex ecological systems with hierarchical

structures, based on the ideas of dhierarchical patch

dynamicsT and dscaling laddersT, which has been success-

fully adapted to the study of heterogeneous landscapes.

1.2. Overview of the proposed framework

The ultimate goal of this paper is to present and

evaluate the elements of a new statistical framework for

multiscale, multigranular land cover classification. Spatial

scale will be represented in an efficient manner through the

use of a quad-tree data structure, in analogy to conven-

tional aggregation methods and many methods of image

segmentation. A translation invariant (TI) implementation,

analogous to those used commonly in the wavelet literature

(e.g., Coifman & Donoho, 1995), helps overcome the

block effects that would otherwise accompany the quad-

trees. To this basic data structure we add the use of

statistical finite mixture models, through which we imple-

ment a form of implicit aggregation using maximum

likelihood procedures. Finally, categorical scale is incorpo-

rated through the presence of a user-defined categorical

hierarchy, after the hierarchical scene model proposed by
Strahler et al. (1986). The use of such hierarchies in this

paper emphasizes spatial nesting, as in Woodcock and

Harward (1992), in that a patch is labeled as a general

class only when at a certain spatial scale it is judged to

contain sufficient information likely to correspond to

patches of more than one specific class. Overall, classi-

fication maps are produced in our framework through the

implementation of formal statistical model selection pro-

cedures, and a simple post-processing step that allows for

the enhancement of user-specified preferences.

The various modeling components and statistical tools

used in this paper are borrowed from the multiscale,

multigranular image segmentation framework introduced

by the authors in Kolaczyk et al. (submitted for publica-

tion). There a rigorous mathematical derivation and analysis

of the framework can be found, including a result showing

that the underlying model selection strategy is capable of

producing characterizations of an underlying landscape that

are nearly optimal in the sense of a certain well-defined

decision-theoretic criterion. The primary contribution of the

current paper is to provide a detailed empirical assessment

of the degree to which the resulting framework and its

individual components can contribute to improved remote

sensing land cover classification on a practical level. We

proceed through the use of three separate numerical

simulation experiments, which allows us to compare results

closely against an actual dtruthT. Our model is benchmarked

against a conventional label aggregation approach and

modifications thereof.

More specifically, we present our work cumulatively in

three stages, addressing first the topic of aggregation, then

the topic of adaptive choice of spatial scale, and lastly, the

topic of adaptive choice of categorical scale jointly with

spatial scale. In Section 2, we show that statistical finite

mixture models can be used with groups of un-aggregated

spectral measurements, at each of a range of individual

scales, to produce gains in classification accuracy over an

analogous aggregation-based approach. We then demon-

strate in Section 3 how the principle of statistical model

selection may be used with the finite mixture models to

provide a method that makes locally adaptive choices of

spatial scale, and we quantify the effect of this capability on

classification accuracy. Lastly, we extend this paradigm in

Section 4 to allow for jointly adaptive selection of spatial

and categorical scale, yielding our overall multiscale,

multigranular framework, and we similarly quantify the

resulting effects. In Section 5, we finish with additional

discussion of these results.
2. First experiment: spectral measurements vs. class

labels in aggregation

As the first of our three experiments, this section presents

an aggregation approach that uses statistical finite mixture

models in conjunction with original pixel-scale spectral
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measurements at successively coarser scales and compares

this approach with conventional aggregation of pixel-wise

labels.

2.1. Methodology

Throughout this paper we represent the notion of

consecutive spatial scales through the use of windows of

different sizes, starting with the original pixels and then

moving up to windows of size 2�2, 4�4, 8�8, . . . ,
doubling with each change of scale and nesting windows at

one scale within those at coarser scales. The nesting of

scales is convenient algorithmically for the material that

follows in the next two sections. In this section alone, it also

will be of interest to refine this set of scales to use a more

continuous progression of scales, such as through the

incorporation of 3�3, 5�5, 6�6, and 7�7, and so on.

Now at each scale, we consider two methods by which

to estimate the fraction of each land cover class within a

given window: the conventional method of counting labels

resulting from pixel-scale classification (i.e., label aggre-

gation), and a method based on statistical finite mixture

models. For the former, the original spectral measurements

are used directly only for the classification at the finest

spatial scale and the resulting labels are then used as input

at each successively coarser scale. In contrast, the mixture

model approach uses the measurements directly at every

scale, which intuitively should result in a gain in

information.

Statistical finite mixture models dictate the measure-

ments of some population as having in fact come from a

finite number of some sub-populations. Accordingly, the

population probability density can be modeled as the

weighted sum of the probability densities of the sub-

populations (components), i.e.,

f xð Þ ¼
Xg
i¼1

pi fi xð Þ; ð1Þ

where f(x) is the mixture density for the measurement x, g is

the number of components, fi(x) is the density for the i-th

component, and the weights pi are non-negative quantities

that sum to one. See McLachlan and Peel (2000), for

example.

Finite mixture models can be useful in the context of land

cover classification because at coarser scales a window

often contains a number of land cover categories that can be

identified at finer spatial scales. Hence, as a group, the

spectral measurements x corresponding to the pixels in the

window can be modeled as deriving from a mixture of

densities like that in Eq. (1), where g is number of classes,

the component densities fi correspond to the spectral

distributions for each possible individual land cover

category and the weights {pi} can be interpreted as the

fraction of each category in the window. For areas with only

one class we would expect the weight for that class to be
close to one and the weights for all other classes to be close

to zero. It is possible therefore to model the land cover

across an image, at a given choice of scale, if we let the set

of all possible land cover classes inform our choice of

mixture components fi and the weights pi to potentially vary

from window to window. This principle is the same as that

underlying the use of dmixture analysisT in the literature on

the remote sensing sub-pixel proportion problem (e.g.,

Smith et al., 1990), except that here the focus is on

dsupra-pixelT (i.e., above pixel scale) proportions across a

succession of coarser scales. Of course, in order to use

mixture models as we describe, the component probability

densities fi must be known or learned beforehand. In this

paper we specify them to be themselves Gaussian mixtures

and fit the corresponding parameters for each component to

pure-class training data using a standard EM algorithm, as

described in Ju et al. (2003). Our choice to model the pure-

class densities as Gaussian mixtures is driven by the fact

that such mixtures have the capability of approximating

complex densities arbitrarily well (e.g., pages 11–14,

McLachlan & Peel, 2000). The fitting of these mixtures

entails estimation of the number of Gaussian components in

a class and each component’s proportion, mean and

covariance. Taking these inferred fi as fixed, we then

analyze an image at a given scale by estimating a set of

weights {p̂i} for each window from the measurements for

all pixels in that window, again using an EM algorithm (see

McLachlan & Krishnan, 1997 for detail on EM).

2.1.1. Translation invariance implementation

In performing aggregation-based analysis of remote

sensing data, it is common that at a given scale the window

is moved across the image in a non-overlapping fashion.

The resulting representation will look dblockyT, particularly
as the window size increases, due to the monoscale nature of

the method. Additionally, results produced in this way lack

translation invariance (TI). This limitation is illustrated in

Fig. 1, where aggregation of an 8�8 image at scale 2�2

splits the pure conifer patch in the middle and very likely

makes it disappear at this scale. The patch would be unsplit

and likely preserved if shifted off the central axis. These

problems stem from using a collection of windows that

induce a fixed partitioning of the image, but they can be

overcome with a translation invariant implementation. The

basic idea is to allow for the use of an enlarged collection of

windows corresponding to a fully redundant system of all

possible partitionings and to then average the representa-

tions from these partitionings.

In this section a TI implementation is applied to both the

label aggregation approach and the finite mixture model

approach, at each scale except the coarsest scale, in the

following manner. At a scale with window size m�m, the

image is shifted m2 times, each time by ia{0, 1,. . .,
m�1} rows and ja{0, 1,. . ., m�1} columns, and the rows

and columns that are shifted out are appended to the bottom

and to the right of the image in the original order (wrap
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Fig. 1. A simple illustration of lack of translation invariance in aggregation

using a fixed partition. Label dcT represents conifer class and dhT represents
hardwood class. Note the pure conifer patch is split by this fixed partition.
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around). For each shifted image at a scale, the land cover

fractions within all windows are estimated with both

approaches, and then the columns and rows of the resulting

image are shifted back to the original positions. Finally, the

land cover fractions for each pixel over all m2 shifts are

averaged. It is obvious that TI would have no effect at the

coarsest scale in a monoscale aggregation.

The redundant nature of the TI algorithm makes the

averaged vector of fractions at a given scale actually

available for each pixel at the original 1�1 scale. The

vector contains information for a spatial neighborhood of

each such pixel proportional in size to the scale of the

window used. In the experiment of this section, we apply a

majority rule to the vector of each pixel to obtain a final

label. The dwrappingT used in our algorithm can sometimes

create artifacts in a narrow strip of pixels on the borders of

the image, like many other approaches handling the border

problem (e.g. Schowengerdt, 1997), but it helps enormously

to improve the characterization for the interior of the image.

TI implementations used throughout this paper, although the

algorithms for the methods of the second and third experi-

ments will be slightly more involved. See Coifman and

Donoho (1995) for more details on TI in statistics and

Sveinsson et al. (1998) for its application to de-noising in

remote sensing.

As a final note on this topic, we mention that, on a scale-

by-scale basis, the method resulting from combining the

conventional aggregation scheme with a TI implementation

has an interesting connection to the commonly used

overlapping moving window filter of odd sizes (e.g.,

Gurney, 1983). Specifically, this combination provides land

cover fractions for each pixel by averaging the fractions

within all possible windows containing that pixel. This

approach is equivalent to using a moving, overlapping

window with a particular set of weights decaying from the

central pixel. Take scales 2�2 or 3�3, for example. The
method is equivalent to using a moving window of 3�3 or

5�5, with respective weights

1=16d½ 1 2 1

2 4 2

1 2 1
� and 1=81d

1 2 3 2 1

2 4 6 4 2

3 6 9 6 3

2 4 6 4 2

1 2 3 2 1

3
77775:

2
66664

The use of weighted moving windows is common in the

filtering of the original spectral image, but is rarely seen in

post-classification contextual relabeling. One exception is

Thomas (1980), who used a weighted 3�3 window

accounting for the rectangular shape of the early Landsat

MSS pixels.

2.1.2. Measures of accuracy

We use two measures of accuracy throughout this paper,

corresponding to two different ways the vector of estimated

land cover fractions for each pixel can be treated, i.e., either

as input for a majority vote rule (or similar) or as output

themselves. We define our first accuracy measure in relation

to the former case, as the percentage of the land cover

categories in the dtruthT that are correctly recovered.

Our second accuracy measure quantifies the performance

of our two approaches more precisely in taking into account

the actual estimated fractions of all classes. That is, we will

use the mean absolute error (MAE),

MAE ¼ 1=N
XN
i¼1

Xlc
j¼1

j fe;i; j � ft;i; jj=lc ; ð2Þ

where N is the number of pixels in the image, lc is the

number of classes in the landscape, fe,i, j is the estimated

fraction for class j at the i-th pixel, ft,i, j is the dtrueT fraction
for class j at the same pixel (which is either 1 or 0, by the

assumption of dpureT classes at the pixel scale). This error

measure indicates how close the estimated fraction vector is

to the dtrueT fraction on average. It potentially preserves

more information than the first accuracy measure, since as

long as the majority class is correctly identified for a pixel

the first accuracy measure is the same regardless of the exact

fractions of all land cover classes.

2.2. Experiments and results

A simple artificial landscape of 128�128 pixels and 9

patches with pre-determined patch boundaries was con-

structed, in which each patch is composed of a pure land

cover class (Fig. 2(a)). The patches range from 93 to 5894

pixels in size, with a mean of 1820 pixels. Four land cover

classes are present in this landscape, i.e., conifer, hardwood,

brush, and grass. The spectral data used in this simulation

are derived from field data of Plymouth County (which is

south of Boston, Massachusetts); the section of the county

included in this study is mostly rural with a State Forest and

cultural features such as golf courses. Specifically, the
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Fig. 2. Simulated landscape consisting of pure patches exclusively. (a) The dtrueT class labels; (b) color composite with TM bands 432 in RGB; (c) per-pixel

classification; (d) map legend. Note (b) and (c) are based on one trial.
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conifer class consists mostly of white pine plantations, the

hardwood class includes stands of a few oak species, the

brush class is the growth after severe forest fires, and the

grass class is mainly cultured grass on golf courses.

Training sites for the four classes were identified in a

Landsat TM image acquired on September 27, 2000, and

visited in the field in the Summer of 2003. Land cover of the

four classes can be considered constant during this period

because although there might be inter-annual variation there

was no human-induced land cover change in the State

Forest. Class-specific probability densities were then fitted

to the 6 reflective TM spectral bands of training data using

Gaussian mixtures, in the manner described in Ju et al.

(2003). Finally, simulated spectral measurements in the six

bands were generated for each pixel in the artificial image

by sampling from the appropriate fitted density, according to

the dtrueT class label of the pixel. The reason that we sample

from the fitted densities, rather than using real, validated

pixel data, is simply that in the latter case a simulation

involving an image of the size of the one used in this

experiment would require an unrealistically large number of

validation sites.

The simulation was run 30 times with the underlying

dtruthT (Fig. 2(a)) unchanged. For each trial, these simulated

data were analyzed using the label aggregation method and

the finite mixture model method described previously. Both

methods require class-specific densities for the data, which

were taken to be the densities previously fit to the field data.

In other words, for these simulations there is no uncertainty

as to the underlying densities, since the same densities are

used both to generate the data and analyze it, thus placing

both methods on an equal and ideal footing.

Fig. 2(b) shows a sample of simulated TM image in color

composite with bands 432 in RGB. Fig. 2(c) shows a

maximum likelihood classification of this image at the pixel

scale using the fitted densities; the dsalt and pepperT
appearance is typical. The finite mixture method, using a

majority rule on the estimated weights at the 1�1 scale,

would reproduce the results of this classifier, simply by

definition. The label aggregation method takes this classi-

fication as input. Fig. 3 shows the land cover maps created

by label aggregation and finite mixture model methods with

TI for this particular image at nested spatial scales 2�2,
4�4, . . ., and 128�128. Visually, the two methods

produced similar maps at each scale. At the coarsest scale,

both methods label the entire image as the most dominant

class, hardwood. One difference is that the dsalt and pepperT
appearance at the 2�2 and 4�4 scales is more severe for

label aggregation method than for the finite mixture model

method.

The classification accuracy at all the spatial scales

(nested scales 2�2, 4�4, . . . , 128�128, and additional

scales 3�3, 5�5, 6�6, 7�7) for both approaches, based

on 30 trials, are shown in Fig. 4(a). The mean classification

accuracy at the 1�1 scale is 84%. Both the finite mixture

and label aggregation methods dramatically improved

accuracy in moving from the pixel scale to coarser scales,

and they achieve the best accuracies, 99% and 98%

respectively, both at the 3�3 scale. The finite mixture

model method has slightly higher accuracy than the

conventional aggregation at all spatial scales. It is not

surprising that the accuracy for both approaches is poor

beyond the 16�16 scale, which is too coarse to represent

fine spatial details in this landscape e.g., patch boundaries.

The two approaches have exactly the same, low classifica-

tion accuracy at the coarsest scale where both of them

identify the most dominant class (hardwood in this case)

correctly, although the information at the coarsest scale may

not be useful in many contexts. The models have been

evaluated at scales three through seven, in addition to the

spatially nested scales, to check whether the conventional

approach out-performed the mixture model approach in the

neighborhood of the optimal scale, but it is apparent that it

did not, as displayed in Fig. 4(a). The accuracy performance

of the two approaches should be viewed only in a relative

sense; the specific accuracies will depend more generally on

the variability in training data, size and shape of the patches.

In reality it is rare to achieve an accuracy of 84% at the pixel

scale and virtually impossible to obtain an accuracy as high

as that around the 3�3 scale in this experiment.

At most of the scales, the two approaches showed similar

classification accuracy for this particular simulation. How-

ever, this similarity does not necessarily mean that the two

approaches are equivalent in their performance. Specifically,

the label aggregation approach consistently has a higher

error rate when measured by the mean absolute error (MAE)
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in Eq. (2) and shown in Fig. 4(b). Examining this figure, we

can see that at the 3�3 scale, where both approaches

achieved their best accuracy, the MAE for conventional

aggregation is 6% higher. The majority rule and the

corresponding classification accuracy measure mask this

difference when the largest values in the fraction vectors

estimated by the two methods for a pixel correspond to the

dtruthT label. But the fraction vector estimated by the finite

mixture model approach is closer to the dtruthT by the MAE

measure.

To summarize, the use of statistical finite mixture models

with the original, pixel-scale spectral measurements

improves classification accuracy at each of the successive

spatial scales as compared to aggregation of pixel-scale

class labels, which uses spectral measurements only at the

pixel scale.
3. Second experiment: adaptive selection of spatial scales

As shown in the first experiment, coarsening spatial scale

initially improves classification accuracy over per-pixel

classification, but that accuracy drops off after a certain

scale. This tradeoff between scale and accuracy surely varies

with the content of landscape. Moving up to coarser scales

initially helps to smooth out the internal variation within

pure patches, but the boundaries between patches can be

poorly represented with further coarsening. Therefore, a

location-sensitive selection of optimal scale is desirable, so

as to preserve the boundaries between patches at finer scales

while smoothing out the variation within patches at coarser

scales. This suggests an adaptive, multiscale method.

3.1. Methodology for adaptive selection of spatial scale

A commonly used multiscale data structure is the quad-

tree (e.g., Samet, 1990). At the coarsest scale, the entire

image is treated as a single pixel and at the next finer scale,

the image can be split into four square quads. Each of the

quads can be further split into four sub-quads and so on,

until the finest scale is reached. This recursive dyadic

partitioning results in a hierarchical representation of the

image. For an image of 2J�2J pixels, a maximal J +1

layers of representation is produced. If one of these layers is

used in its entirety, the representation is monoscale (i.e., of a

uniform quad size), as in the previous section. However, the

nesting of these layers may be exploited to allow the quad

size to vary across the image, in which case the representa-

tion is multiscale. This feature is appealing for producing

land cover characterizations, since it is desirable to represent

patch boundaries with smaller quads and patch interiors

with larger quads.

Note that the layers of quads in a quad tree correspond

to successive tilings of an image region with nested, non-

overlapping windows of increasingly larger dyadic size

(i.e., 2�2, 4�4, etc.). It has been shown in the previous
section that the land cover content of a given window can

be captured accurately through the use of statistical mixture

models. Therefore, it is natural to turn to formal tools of

statistical model selection for the task of choosing an

appropriate set of quads for the content of an image region.

Our class of candidate models is indexed by the set of all

recursive dyadic partitionings, which in turn corresponds to

the collection of all possible prunings of the complete

quad-tree.

Principles of model selection dictate that the overall

quality of a dgoodT model should balance (a) its goodness of

fit, against (b) its complexity. Note that both measures are

needed to avoid choosing a model that fits a given set of

measurements excessively well but generalizes poorly.

When using finite mixture models, the standard criterion

for goodness of fit is the statistical likelihood. Assuming

statistical independence between spectral measurements

among pixels, given the structure of the underlying land-

scape (i.e., conditional on the set of labels), the likelihood

for our context will be simply the product over all pixels of

densities like that in Eq. (1), where the weights {pi} are

restricted to be the same for all pixels within each quad

(window) of a candidate model.

If we let S xjMð Þ denote the logarithm of the likelihood

of a model M, based on measurements x and we let

pen Mð Þ be a penalty associated with M, our model

selection procedure can then be expressed as one of seeking

M̂uargmax
M

S xjMð Þ � 2 pen Mð Þf g; ð3Þ

where the optimization is over all models M defined

through some pruning of the quad-tree and the equipping of

the resulting quads with arbitrary weights {pi}. While the

penalty function conceivably can take on all manners of

forms, we choose to use a simple, concise representation for

spatial complexity, given by

pen Mð Þ ¼ m 4=3 log 2þ lc � 1Þb log Ng;ðf ð4Þ

where m is the number of quads used in the quad-tree

underlying M, lc is the total umber of possible land cover

classes across the image (e.g., lc=4 in the experiments of

this and the previous sections), b is a tuning parameter (e.g,

we have used b =1/8 in our experiments), and N is the

number of pixels in the image.

The genesis of this particular choice of penalty is rooted

in a formal mathematical argument combining elements of

statistical and information theory, in the spirit of those

underlying the penalties associated with traditional methods

of model selection (also called dsubset selectionT) in linear

regression, such as the Cp statistic and the AIC criterion (e.g.,

Weisberg, 1985, Ch. 8.8). Its derivation parallels that found

in the appendix of Kolaczyk et al. (submitted for publication)

and is omitted. However, the effect of this penalty is

straightforward to see, in that for a given number of classes

lc and an image of a given size N, the gains in likelihood

obtainable through the use of more quads is directly offset
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by the total number m used. Therefore, models M that are

more complex than others but offer only a modest gain in

likelihood will be less appealing under this criterion.

The expression in Eq. (3) specifies that an optimization is

to be carried out. In fact, this optimization may be solved

exactly using an efficient dynamic programming algorithm,

analogous to the type of bottom-up optimal tree-pruning

algorithms used in fitting decision trees (e.g., Breiman et al.,

1984). On the simulated image data used in this section, this

algorithm typically ran in 30 seconds on a Dell Precision

450 workstation running Linux. The essence of the

algorithm is that, at each of the dyadic scales, recursively,

a decision is made on whether to use a single label for a

quad (i.e., merging) or to keep the models chosen for the

four sub-quads at the previous scale (i.e., splitting), based on

complexity-penalized maximum likelihood. Specifically, the

following steps are carried out:

! The contribution to the penalized log-likelihood from

each block at the 2�2 scale, for those blocks that

entail merging, is the logarithm of the likelihood for the

mixture model from Eq. (1), with all four pixels using

the same class label, minus a term equal to the penalty

from Eq. (4) with m =1 for using a single block.

Similarly, when splitting, this contribution is the sum

of the logarithms of the likelihoods of the four individual

pixels at the 1�1 scale, minus a penalty from the penalty

function with m =4 for using four blocks. The results of

this comparison are then saved, i.e., whether the quad is

merged or split, the corresponding penalized log-like-

lihood, and the set of fitted weights.

! Recursively, at the 4�4 scale and coarser, the penalized

log-likelihood for merging is calculated the same way as

at the 2�2 scale, and the penalized log-likelihood for

splitting is simply the sum of that for the four sub-quads

obtained from the previous scale.

We note that, given the scale-recursive nature of the

algorithm, moving from fines scales (bottom of the quad-

tree) to coarse (root of the quad-tree), one in fact obtains at

each of the successive scales a model that is optimal among

that subset of models M allowing quads up to but no

coarser than the current scale of iteration. Since in practice

the underlying structure of the landscape may be such that

only a certain limited range of scales play a role, a user may

find it useful to only run the algorithm up through this

range, thus saving some computational time. In addition,

even if the complete algorithm is run, the succession of

optimal models generated in this manner can communicate

useful information as a group, as we shall see below.

Given M̂ at any of the successive scales, one could then

in principle label each quad using a majority rule or some

other rule on the weights. However, the resulting land cover

characterization will likely look blocky and lack translation

invariance. Fortunately, a TI implementation of this frame-

work is possible, with only a modest increase in computa-
tional complexity. The details, which are slightly more

involved than those described in our first experiment, may

be found in Kolaczyk et al. (submitted for publication). To

produce a land cover classification in this extended frame-

work, the vectors of weights corresponding to each pixel are

averaged over all possible shifts of the image. The pixel is

then assigned the label corresponding to the largest fraction

in this average weight vector. Implementation of this

procedure on the simulated image data used in this paper

typically took 48 minutes if the algorithm was run to the

coarsest scale, and 19 min if to the 32�32 scale where the

algorithm automatically stopped aggregation, on the same

computer mentioned above.

3.2. Experiments and results

We used the same landscape and simulated data of the

first experiment and applied the multiscale approach just

described. The results, in the form of the sequence of

optimal models at the successive scales just described, may

be compared to those of the monoscale approaches studied

in our first experiment. Recall that these approaches were

dmonoscaleT in the sense that at each scale the resulting map

involved aggregation on quads only of that scale. In

contrast, in our multiscale method, the maps at each scale

may contain information adaptively chosen from any of the

finer scales as well. Note that the results below are presented

only at the dyadic scales, given the nested nature of the

quad-tree.

Fig. 3 shows the land cover maps corresponding to the

sequence of optimal multiscale models just described, along

with maps produced by the two monoscale models

described in Experiment one, for the image shown in Fig.

2(b). At the 2�2 and 4�4 scales, the multiscale maps are

exactly the same as those by the finite mixture model.

However, note that at coarser scales, i.e., 8�8 and onwards,

there is very little degradation in quality for the multiscale

method when compared to the 4�4 scale, in contrast to the

two monoscale methods. These results provide a clear

illustration of the ability of the multiscale approach to

maintain finer detail at coarser resolutions; for example, the

63-pixel conifer patch in the middle of hardwood is well

represented even at the 32�32 scale. The maps of the

64�64 and 128�128 scales stay the same as that of the

32�32 scale, due to an automatic termination of spatial

coarsening induced by the penalty in Eq. (4). The

incongruous segments of labels with a width of one or

two pixels lining the edges of the image are artifacts created

by the dwrappingT in the TI implementation, but they appear

trivial, compared to the improvement of TI in the overall

representation. An examination of the maps at scale 32�32

based on a fixed quad-tree (the last row of the right panel)

may help to better visualize the multiscale nature of the

method and to appreciate the effect of TI.

The classification accuracy for our multiscale method

based on all 30 trials is plotted with the accuracy curves
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from the first experiment, in Fig. 4(a), and the error in

estimation of land cover fractions, MAE, with the others in

Fig. 4(b). At the 2�2 and 4�4 scales, the multiscale model

and the finite mixture model have identical accuracies. It is

because for this particular set of data, the multiscale method

did not keep details finer than 2�2 and 4�4 at these two

scales, i.e., it was effectively a monoscale finite mixture

method. The difference, however, is that the multiscale

method is not restricted to use only 2�2 or 4�4 quads—it

chose to do so. At the 8�8 scale and beyond, the multiscale

method has greater accuracy than either of the monoscale

approaches. Moreover, the accuracy is essentially main-

tained from its peak at the 8�8 scale. This is due to the

ability of the method to inherit finer spatial scales and in

fact, there is no further coarsening beyond the 32�32 scale.

These results indicate that this choice is made in an effective

manner.

We note that while there are other multiscale methods for

image processing in general (e.g., Bouman & Shapiro,

1994), and even in land cover characterization (e.g. Franklin

& Wilson, 1992), our approach links in an intuitive manner

both to the basic building blocks of pixel-wise methods and

the notion of scale linked to quad-trees.

To summarize, localized adaptive selection of spatial

resolution using methods of statistical model selection is

able to not only match but improve upon the optimal scale-

specific accuracy of the monoscale approaches described in

the last section.
4. Third experiment: adaptive selection of spatial and

categorical scales

While our use of mixture models was found to yield

certain gains in information over aggregation methods in

Section 2, and while they were a correspondingly

fundamental component of the multiscale framework

presented in Section 3, it is in allowing for the notion of

categorical scale to be incorporated in a simple but

effective manner in a statistical modeling paradigm that

they become particularly valuable to us. By expanding the

class of models from Section 3 in a natural manner, and

generalizing the notion of complexity accordingly, the

multiscale framework just described extends to a fully

multiscale, multigranular (MSMG) framework for remote

sensing image classification.

4.1. Methodology for jointly adaptive choice of spatial and

categorical scales

A mixture of all possible pure classes is used, for all

quads at all scales, throughout the first two experiments. In

reality, however, not all classes will be present in all regions

of an image at all scales. From the perspective of our

statistical modeling, this means that different mixtures of

different numbers of pure classes can be expected to best fit
different quads, depending on the scale of a quad and the

local composition of the landscape. Just which combinations

of classes best fit which quads therefore can be expected to

provide useful information on the categorical complexity, or

granularity, of the corresponding land cover.

Not all possible mixtures of pure classes may be both

realistic and of interest to the user. In our framework,

candidate mixtures are to be identified by the user based on

prior knowledge of the landscape, and structured in a

hierarchical fashion, with more specific classes spatially

nested within more general classes, along the lines of

Woodcock and Harward (1992). We use this type of

hierarchy to explicitly constrain the class of possible finite

mixture models fit to any given quad in the procedure

described below, with each candidate mixture model

possessing a name of its own, corresponding to the

appropriate general class label in the hierarchy. The

hierarchy should reflect the characteristics of the scene,

and can also be modified based on intended use of the map.

Consider, for example, the simple categorical hierarchy

shown in Fig. 5(b), which was used for the experiments

presented later in this section. It has the four classes used in

the first two experiments as specific classes, at the leaf level

of the hierarchy, and three general classes, i.e., forest and

non-forest and then vegetation. All mixtures are ultimately

characterized by their respective specific classes and the

proportions thereof. Thus, we allow for regions to be

potentially called forest (or non-forest) where the two

classes conifer and hardwood (or grass and brush) are

spatially mixed in sufficient proportions. Similarly, where

all four specific classes are present, the label vegetation can

be one of the candidate classes.

As in the multiscale framework described in Section 3,

we use statistical model selection to choose an appropriate

multiscale, multigranular representation for a set of remote

sensing measurements. The set of candidate models M is

now indexed by the set of all labeled recursive dyadic

partitionings, which in turn corresponds to the collection of

all possible labeled prunings of the complete quad-tree. The

possible labels themselves are simply those to be found on

the specified categorical hierarchy. Our task of model

selection again can be expressed in the form of the

optimization in Eq. (3), but we modify the penalty function

to account for not only complexity of spatial scale, as in Eq.

(4), but also complexity of categorical scale. Using argu-

ments analogous to those producing the previous penalty,

this new penalty has the form

pen Mð Þ¼
�
4m

3

	
log 2þ m log Lcþ

Xm
i¼1

l RiÞ� 1ð �b log N :½

ð5Þ

Here m, b, and N are the same as in Eq. (4), the new

variable LC refers to the number of labels in the hierarchy,

and l(Ri) is the number of specific (pure) classes in a

mixture used for region (i.e., quad) Ri. Note that a specific
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class is considered to be a mixture with just one component.

The parameter LC has a constant component, i.e., the number

of specific classes, and a variable component, i.e., the

number of general classes, which can differ with applications

for the same set of specific classes and image data. So both

the second term and the third term in the penalty function

jointly penalize spatial and categorical complexity.

The optimization in Eq. (3) can again be solved exactly

and efficiently, using a variation on the dynamic program-

ming algorithm described in Section 3 for the multiscale

framework. The algorithm maintains the same scale-

recursive structure, considering the splitting or merging of

each quad at each scale. The only difference is that, for each

quad, an additional step is now included in which all

possible mixtures of classes are compared, through their

likelihood and the appropriate penalty of their categorical

complexity (all models share the same spatial complexity on

a given quad). In more detail, the following procedures are

carried out:

! At the 2�2 scale, the calculation of penalized log-

likelihood for merging considers all classes in the

hierarchy. The log-likelihood for merging using a

mixture class is the logarithm of the likelihood from
Eq. (1), minus penalty from Eq. (5) with m =1 for using a

single block and l(Ri) the number of the specific classes

in this mixture. This is also true for merging using a

specific class. The log-likelihood for splitting is the

logarithm of the sum of the likelihood of the four finest

pixels, minus a penalty with m =4 and l(Ri)=1. The

results of this model selection step are saved, i.e., the

class label(s) for the quads, the penalized log-likelihood,

and the set of fitted weights.

! Then, at the 4�4 scale and coarser, the penalized log-

likelihood for merging is calculated the same way as at

the previous scale, and for splitting, the penalized log-

likelihood is simply the sum of those for the models

chosen the four sub-quads of the previous scale.

Note that, similar to the algorithm for our multiscale

framework, the recursive pruning at each of the successive

scales produces an optimal multiscale, multigranular model

which include quads up to but no coarser than the current

scale. Additionally, a TI version of this procedure can be

implemented in direct analogy to that for our multiscale

framework; we again refer the reader to Kolaczyk et al.

(submitted for publication) for details. Actual computational

times scale like those reported in Section 3, in proportion to
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the size of the categorical hierarchy. For our simulated

image, the complete MSMG model with TI took 61 min,

while execution up to the 32�32 scale took 25 min. For

comparison, these numbers and those cited earlier in this

paper, have been collected in Table 1.

It should also be noted that, in contrast to the output of

our multiscale method, which consists of optimally chosen

quads and weights, the output of our MSMG method

additionally includes the labels selected. This opens the

possibility of using either the labels, the weights, or both in

producing a final land cover map. We have found the

weights to contain more useful information than the class

labels themselves, which is not surprising in light of the

results of Section 2. Therefore, in post-processing the results

of our statistical model selection procedure to produce a

land cover map, we apply to the weights a modification of

the majority-vote rule employed with the multiscale frame-

work of Section 3, adjusted to account for multiple

granularities in a manner guided by the categorical

hierarchy.

Specifically, in our TI implementation we average the

weights over all possible shifts, as in Section 3. Then, each

pixel is assigned a category as specific as possible, under the

condition that the category’s areal fraction in terms of

summed fractions of its specific classes is greater than 50%

and it contains at least 75% of the areal fraction of its parent.

The reason for this two-staged criteria is that, as can be

expected, the presence of even a small amount of a given

specific class typically will cause the model selection

procedure to choose a mixture model using a more general

class that includes that specific class. However, an expert

might judge that this particular specific class is not present

in sufficient quantity to merit the label of the general class.

The simple labeling strategy we adopt allows such judgment

to be incorporated in a straightforward fashion, within the

context of the same categorical hierarchy used in the

original model selection. An outline of our overall MSMG

framework can be found in Fig. 6.

To benchmark this multiscale, multigranular approach,

the two monoscale, monogranular aggregation approaches

described in the first experiment (i.e., label aggregation and

finite mixture model) were extended to be multigranular by

interpreting the estimated fraction vectors produced by each
Table 1

The computational time of the multiscale model (MS) and multiscale,

multigranular model (MSMG) on the simulated data. For the non-TI case,

the results for running the model to the coarsest scale, 128�128, are

shown. For the TI case, additional results up to the intermediate 32�32

scale at which the respective models automatically stopped aggregation are

also reported

Non-TI TI

32�32 128�128

MS 30 sec 19 min 48 min

MSMG 55 sec 25 min 61 min
in the same manner as just described, with respect to the

same categorical hierarchy and the same specified thresh-

olds of areal fractions.

4.2. Experiments and results

The landscape used in the first two experiments was

modified by making two of the patches mixed and keeping

the others pure. One of the mixed patches is a conifer–

hardwood mixture (forest), and the another is a brush–grass

mixture (non-forest). Mixed patches were constructed by

first randomly assigning a pixel in the patch a label of one of

the two specific classes with certain probability and then

generating spectral measurements from the fitted density for

that class. The probabilities (which are simply the weights in

the corresponding mixture model) used for the conifer–

hardwood mixture are 0.6 and 0.4, respectively, and are

0.55 and 0.45 for the brush–grass mixture. Note that the

mixing pattern of brush and grass is hypothetical since here

grass density is fitted with cultured grass from golf courses,

which is never mixed with brush in reality. But this mixing

setup in this experiment has practical implications. The

resulting landscape represented with specific class labels

(dmonogranular truthT) is shown in Fig. 5(a). Since the

mixed patches are highly fragmented with specific classes, it

may be nonsensical to label the mixed patches using the

specific class labels at the pixel scale, even if a per-pixel

classification could achieve an accuracy up to 100%. The
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use of a more general class can greatly simplify the pattern

and be desirable for many purposes. The corresponding

multigranular representation (dmultigranular truthT), con-

forming to the hierarchy presented in Fig. 5(b) is given in

Fig. 5(c).

The simulation was run 30 times and the simulated

images were analyzed with the methods just described. Fig.

5(d) shows a simulated TM image in color composite from

one of the trials. The per-pixel classification of this image is

shown in Fig. 5(e) with an accuracy of 84% when evaluated

against the dmonogranular truthT. However, our real interest
is in capturing the dmultigranular truthT. The classification of
this image by MSMG and the two monoscale methods with

multigranular extension, at successive coarser scales, can be

found side by side in Fig. 7. At the 2�2 scale, the

underlying dmultigranular truthT for the mixed patches is

already beginning to appear in the maps produced by all

three methods. By the 4�4 scale, the pure patches are

labeled in a more or less uniform fashion, while the mixed

patches are beginning to solidify. From the 8�8 scale

onwards, both pure patches and mixed patches appear in

solid color. As in the second experiment, the MSMG maps

at the 64�64 and 128�128 scales stay the same as that at

the 32�32 scale, as a result of the adaptive choice of

optimal spatial and, in this case, categorical scale. The
artifacts at the edge of the image created by dwrappingT in
the TI implementation, albeit trivial, are visible. The

classification based on a fixed partition at the 32�32 scale

is shown in the last row of the right panel of Fig. 7, which

can be compared with the TI version at this scale to see the

effect of the translation invariant implementation. In

contrast, the finite mixture model and the label aggregation

methods keep coarsening when moving up to coarser spatial

scales and produce poor results at the 16�16 scale and

beyond.

Fig. 8(a) shows a comparison of classification accuracy,

based on all 30 trials, for the MSM approach of this section

against the multigranular extensions of the label aggregation

and finite mixture model methods of Section 2. The MSMG

approach is clearly superior to the other two, and to the label

aggregation in particular, in analogy to what was observed

for the multiscale, monogranular method in the experiment

of Section 3. All three approaches performed best at the

4�4 scale, with mean accuracies of 89%, 87%, and 81%,

respectively. The accuracy for the multiscale, multigranular

approach does not drop much from the peak accuracy at

coarser scales, while that for the other two approaches drops

considerably. Compared to their monogranular counterparts

in Section 3, the multiscale, multigranular approach and the

label aggregation approach with multigranular extension
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Fig. 8. Accuracy of the multiscale multigranular method (MSMG) and the multigranular extensions of finite mixture model and label aggregation methods for

the landscape with two of the patches mixed: mean and F1 standard deviation based on 30 trials. (a) Classification accuracy at each scale for the three

methods; (b) the mean absolute error in fraction estimation by the three methods. For MSMG, the results are shown at nested spatial scales only i.e., 2�2,

4�4, . . ., 128�128; for the other two methods, results at additional scales 3�3, 5�5, 6�6 and 7�7 are also shown.
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have a smaller difference in MAE at most of the scales (Fig.

8(b)), but they differ more in their classification accuracies.

We note that the multiscale multigranular approach has a

lower accuracy than the multiscale approach in the second

experiment, because of the greater difficulty of the new

problem.

One noticeable phenomenon that arises here in the

maps produced in this experiment, and not in the previous

experiments, is the presence of dbandsT straddling adjacent

patches along the boundary. In reality our landscape is

designed with an abrupt shift between classes across

boundaries. But our method labels a narrow strip along

the boundaries as a mixture of the classes on either side.

This phenomenon is due in part to the fact that the

method generally seemed to operate in this particular

landscape at scales no finer than a slight coarsening of

the original pixel scale (e.g., the 4�4 scale in the

experiment of Section 3), in an effort to balance accuracy

against noise in the data. The mathematical analysis in

Kolaczyk et al. (submitted for publication) suggests that the

width of these boundaries will in general be roughly on the

order of log N for an image of N pixels using the

methodology proposed here, although the precise width

will vary with specifics of the landscape, the dpureT classes
and hierarchy used. This effect is similar to the so-called

boundary effect described in the GIS literature (e.g.,

Ehlschlaeger & Goodchild, 1994).

The degree to which these bands are apparent in the final

land cover map depends on the nature of the post-processing
that is applied to the results of the model selection stage. For

example, while the multiscale (monogranular) method of

Section 3 also uses blocks slightly coarser than the pixel

resolution near boundaries, we force the method, in our

post-processing step, to choose a dpureT class label for each
quad. Here, for our multiscale, multi-granular method, our

post-processing algorithm allows the use of labels of mixed

classes anywhere in the image. A more sophisticated post-

processing strategy, one that attempts to distinguish between

interiors and boundaries of subregions, should be able to

alleviate this effect, if desired. Although we do not pursue

this extension here, we remark that, since it is in dbandsT
labeled as general classes where most of the classification

error was observed to occur, accuracies even better than

those described above should be achievable.

To summarize, the multiscale, multigranular approach

produces sensible, visually appealing characterizations of

the general pattern in the more complex landscape

introduced in this section, with higher accuracies at all

scales compared with the multigranular extension of the

conventional label aggregation approach and the finite

mixture model approach.
5. Discussion and conclusions

The overall methodology presented in this paper

addresses the issue of choosing spatial and categorical scale

in remote sensing land cover classification. As a technical
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framework, it has the flexibility to incorporate the statistical

components of generic conventional monoscale, monogra-

nular classification methods, if the probability density

models of those methods for the specific classes are available

at the pixel scale. The progressive nature of the presentation

of our results was designed to facilitate the exposition of

each of the key components of our overall methodology:

mixture models, multiscale modeling, and multiscale, multi-

granular modeling. Accordingly, we have shown that both

the components themselves and the complete framework

have important implications for addressing some fundamen-

tal issues in land cover remote sensing.

First, the use of statistical finite mixture models, as

illustrated in Section 2 (Experiment 1), can improve the

accuracy of pixel-wise classification over the conventional

label aggregation approach. This result can impact, for

example, the validation of coarse-scale land cover classi-

fication or sub-pixel unmixing, where typically the dtruthT at
the coarser scale is obtained from conventional aggregation

of class labels derived at a finer spatial scale, i.e., what we

have called label aggregation.

Second, our multiscale method in Section 3 (Experiment

2) addresses the limitation of monoscale approaches to land

cover classification that has been highlighted in many

studies, and responds to calls for methods that make

adaptive choice of scale in correspondence with local

complexities in the image (Barnsley et al., 1997; Milne &

Cohen, 1999; Moody & Woodcock, 1995). While some

rudimentary multiscale approaches based on the quad-tree

data structure respond similarly to some degree (e.g.,

Csillag, 1997; Franklin & Wilson, 1992), they lack the

statistical rigor of our approach and the translation invariant

implementation. Our multiscale method adaptively chooses

spatial scale and automatically stops aggregation, in a

location-sensitive manner, at the resolution beyond which

no further accuracy can be gained, inheriting the details

from finer scales where necessary.

Interestingly, our multiscale approach with TI implemen-

tation actually takes non-trivial steps towards addressing the

modifiable areal unit problem (MAUP) in remote sensing.

MAUP, as a more general problem in spatial data analysis,

originates from the fact that a large number of ways exist in

which a study area can be divided into non-overlapping

areal units for data collection and analysis (Marceau et al.,

1994a, 1994b; Openshaw & Taylor, 1981), both across

different choices of scale (the scaling problem) and within a

given scale (the zoning problem). Remote sensing repre-

sents a particular case of MAUP in that the pixel sizes of

remote sensing images are generally arbitrary, when

considered across various types of instruments and applica-

tions, and the use of quads at a given scale in the analysis of

fine-scale images is just one choice of areal units. Our

multiscale approach allows, through the use of quad-trees,

for the partitioning of the study area across a range of scales

and, through the use of model selection, chooses scales in a

locally sensitive manner across the image scene, thus
addressing the scaling problem. In addition, the TI

implementation considers all possible ways of partitioning

allowed by the multiscale approach, thus addressing the

zoning problem. These aspects of our method would see to

merit additional study.

Thirdly, the multiscale, multigranular framework pre-

sented in Section 4 (Experiment 3), in allowing for adaptive

choice of both spatial scale and categorical scale, can be

viewed as approaching the task of land cover classification

as a version of the dcartographic generalizationT problem in

cartography, wherein one seeks to best represent selected

classes of features at different map scales. Our framework

provides a statistically grounded procedure for generating

maps that are potentially more intuitive and visually

appealing than those created using monogranular methods.

The results are much more like a dhand-drawnT map a

cartographer might produce, showing both generalizations

and details, as warranted.

Ongoing work includes the evaluation of our framework

with real TM image data of Plymouth County, Massachu-

setts, with a greater number of specific classes and a more

complicated categorical hierarchy than used here. In

addition, a related focus of this work is a deeper study of

the necessary principles and practice needed to make

effective choice of categorical hierarchies for our frame-

work. Relevant issues include the choice of basic scene

elements, the effect of varying the structure of the

categorical hierarchy, and the effect of class mixing at the

sub-pixel scale.
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