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Most data concerning the topology of complex networks are the result of mapping projects which bear
intrinsic limitations and cannot give access to complete, unbiased datasets. A particularly interesting case is
represented by the physical Internet. Router-level Internet mapping projects generally consist of sampling the
network from a limited set of sources by using traceroute probes. This methodology, akin to the merging of
spanning trees from the different sources to a set of destinations, leads necessarily to a partial, incomplete map
of the Internet. The determination of the real Internet topology characteristics from such sampled maps is
therefore, in part, a problem of statistical inference. In this paper we present a twofold contribution in order to
address this problem. First, we argue that inference of some of the standard topological quantities is, in fact, a
version of the so-called “species” problem in statistics, which is important in categorizing the problem and
providing some indication of its inherent difficulties. Second, we tackle the issue of estimating arguably the
most basic of network characteristics—its number of nodes—and propose two estimators for this quantity,
based on subsampling principles. Numerical simulations, as well as an experiment based on probing the
Internet, suggest the feasibility of accounting for measurement bias in reporting Internet topology
characteristics.
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I. INTRODUCTION

The enormous amount of work dedicated in the recent
years to the study and understanding of complex networks
�1–5� has been largely due to the possibility of accessing and
analyzing unprecedented amounts of data. In particular, the
interest of physicists has been stimulated by the observation
of ubiquitous patterns such as �i� the small-world property
�6�, defined by an average shortest path length—average dis-
tance between any pair of vertices—increasing very slowly
with the network size N; �ii� the presence of a large transi-
tivity �7�, which implies that two neighbors of a given vertex
are also connected to each other with large probability; �iii� a
scale-free behavior for the degree distribution P�k�, defined
as the probability that a vertex is connected to k other verti-
ces �has degree k�, that typically shows power-law behavior
P�k��k−�, where � is a characteristic degree exponent, usu-
ally in the range 2���3.

The data on which such observations are based are, how-
ever, often incomplete and the result of an incomplete sam-
pling of the real network one would like to study. They may
therefore a priori suffer from uncontrolled biases. Recently,
the question of the accuracy of the topological characteristics
inferred from such maps has been the subject of various stud-
ies, to understand in particular how various sampling tech-
niques introduce biases that can alter the network’s charac-
teristics �8–16�.

In this paper, we focus on the case of the physical Internet
�by “physical Internet” we mean the network composed of
routers—nodes—connected by cables and other communica-
tion systems through which the Internet traffic transits� to

tackle the issue of how real characteristics of a network can
be inferred from the sampled data, i.e., how the sampling
biases can be corrected. Due to the lack of any centralized,
complete map of the physical Internet, the measurement and
characterization of Internet topology is indeed a task of fun-
damental interest. The most common approach to build and
update partial Internet maps at this level consists in acquiring
local views from several vantage points, using the well-
known traceroute tool to evaluate paths to different destina-
tions. The traceroute command sends probes �data packets�
toward a certain Internet node �IP address� and provides the
addresses of the traversed nodes. Various such projects have
been developed in the last years and have allowed to obtain
important information on the structure of the Internet
�17–22�, even if the corresponding maps are necessarily in-
complete. The way in which traceroute measurements intro-
duce sampling biases, as first observed in Ref. �8�, has been
analyzed, and the following consensus has been reached
�9–14�: while qualitative conclusions on the topology drawn
from traceroutelike sampling �e.g., a highly variable node
degree distribution� are reliable, conclusions of a precise
quantitative nature are much more subject to biases. That is,
there is the possibility for considerable deviations between
quantitative measurements of topological characteristics of
the sampled Internet maps and those of the actual Internet.

The problem of accounting for such deviations can be
seen, from a statistical perspective, as one of designing ap-
propriate estimators of topological characteristics �e.g., aver-
age degree, clustering coefficients, etc.� that correct for the
underlying bias. Designing estimators to match a given sam-
pling design is a canonical task in statistical sampling theory
�e.g., Ref. �23��. In fact, there exists a small but carefully
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developed body of such work in the specific context of graph
sampling, primarily in the social networks literature �e.g., see
Ref. �24�, and references therein�. However, it may be ob-
served from this work that the task in this context is particu-
larly challenging, with estimators needing to incorporate as-
pects of the sampling design, effects of network topology,
and the nature of the characteristic to be inferred. Further-
more, the solutions in this literature do not directly address
the particular type of path-based sampling in traceroute stud-
ies.

Our contribution in this paper is to lay some initial
groundwork on the topic of inferring Internet topology char-
acteristics from traceroute-generated maps. In Sec. II we re-
view notations and explain how the inference of some stan-
dard topological characteristics fall under the category of so-
called “species” problems in statistics, a point which has
fundamental implications. We then focus on the most basic
of these Internet “species,” namely, the number of nodes in a
network �i.e., the network size�. In Sec. III, we provide ana-
lytical arguments illustrating the difficulty of the problem,
and propose two nonparametric estimators for the network
size in Sec. IV. We present the results of a numerical simu-
lation study and of a real Internet measurement experiment
in Sec. V. These results suggest the feasibility of designing
estimators that account for traceroute bias, although addi-
tional challenges are to be expected in estimating further
graph characteristics, as discussed in Sec. VI.

II. BACKGROUND

A. Model and notation

Throughout this paper we will represent an arbitrary net-
work of interest as an undirected, connected graph G
= �V ,E�, where V is a set of vertices �nodes� and E is a set of
edges �links�. We denote by N= �V� and M = �E� the numbers
of vertices and edges, respectively. As a model for a typical
traceroute study, we consider that a set S= �s1 , . . . ,snS

� of nS

active sources deployed in the network sends probes to a set
T= �t1 , . . . , tnT

� of nT destinations �or targets�, with S ,T�V.
We also define the source and destination densities qS
=nS /N and qT=nT /N.

Each probe collects information on all the vertices and
edges traversed along the path connecting a source to a des-
tination �25�. The merging of the various sampled paths
yields a partial map of the network, that may in turn be
represented as a sampled subgraph G*= �V* ,E*�. The actual
paths followed by the probes depend on many different fac-
tors, such as commercial agreements, traffic congestion, and
administrative routing policies. In fact, the issue of modeling
the paths from source to destination is in itself nontrivial. It
is therefore important to emphasize that the theoretical work
and the estimators presented in the next sections are indepen-
dent on the specific routing model used. In the numerical
validation �Sec. V� of our theoretically derived estimators,
however, we will use a very simple model in which probes
use shortest paths between sources and targets. Numerical
simulations with more refined models such as the one pre-
sented in Ref. �26� do give similar results.

It should be noted, however, that in our framework we do
not take into account the various anomalies that can arise in
traceroute-based measurement studies. These anomalies may
introduce complex artifacts in IP topology maps constructed
from traceroute data, as described in Ref. �27�, and are be-
yond our scope. The issue of nonresponding routers �result-
ing in incomplete paths� is similarly not discussed in this
paper either. We will instead assume that the traceroute tool
provides a realistic, unique, and complete path from a source
to a destination. In principle, our framework can be ex-
panded to account for issues such as those raised above, but
at the cost of additional analytic and computational complex-
ity. We leave such extensions to future work, and concentrate
here simply on developing basic foundations and principles.

B. Network inference as “species” problem

Let us consider a summary characteristic of the topology
of G, which we denote by ��G�, such as the number of ver-
tices N, the number of edges M, or the collection of node
degrees �ki�i�V. The observed values N*= �V*� and M*= �E*�,
as simple totals, necessarily underestimate N and M unless
sampling is exhaustive. In fact, the studies on traceroutelike
sampling of networks �8–10,12–14� have shown that the ob-
served values can differ strongly from the real values, with
consequently very important sampling biases. In fact, typical
traceroute studies explore much more thoroughly the vertices
and edges near sources and targets, as well as “central” ver-
tices through which many paths go, and ignore many low-
degree vertices �11,12�.

Given the existence of the strong quantitative biases in the
measured characteristics of sampled networks, and in par-
ticular of the Internet, the question naturally arises as to
whether or not it is possible to produce more accurate esti-
mates of topology characteristics from traceroute samples.
An important initial step towards answering this question is
the observation that estimation of the quantities N, M, and
�ki� in this context falls under the category of so-called “spe-
cies” problems in statistics. Stated generically, the species
problem refers to the situation in which, having observed a
certain number of members of a population, each of whom
falls into one of C distinct classes �or “species”�, an estimate

Ĉ of C is desired. A typical example is that of the proverbial
biologist sitting in a forest and observing animals. Although
at the end of the day the biologist may have observed, say,
four lions, two tigers, and six bears, the total number C* of
species observed is only three, and the biologist would like
to know how many other species are present but were not
observed. This problem arises in numerous contexts and has
received a lot of attention in statistics �see Ref. �28� for an
overview and an extensive bibliography�. Perhaps surpris-
ingly, however, while the estimation of the relative frequen-
cies of species in a population is straightforward �given
knowledge of the total number of species C�, the estimation
of C itself is often difficult. The potential difficulty is due to
the fact that species present in relatively low proportions in
the population are expected to be missed, and there could be
an arbitrarily large number of such species in arbitrarily low
proportions.
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The estimation of N, M, and degrees �ki� can be rephrased
as species problems with traceroute sampling. For example,
in estimating N, consider each separate vertex i as a “spe-
cies” and declare that the species i has been observed each
time i is encountered on one of the n=nSnT traceroute paths.
In other words, a vertex will represent either a “common”
species if it lies on many of the collected paths, or a “rare”
species if it was observed only once or not at all. With our
notations, the total number of species is N and the observed
number of species is N*. A similar argument shows that es-
timation of the number of edges M too may be mapped to a
species problem. Finally, as argued in Ref. �29�, the problem
of inferring the degree ki of a vertex i from traceroute mea-
surements can also be mapped to a species problem, by let-
ting all edges incident to i constitute a species and declaring
this species to have been observed every time one of those
edges is encountered.

As a first step in this direction, we focus on the task of
estimating N, the total number of vertices in the network
graph G. In the case of the Internet, it will correspond to the
number of “alive” IP addresses in the network. Focusing on
N is a logical choice in order to assess the feasibility of our
approach since it should correspond to the simplest quantity
to estimate: we do not expect to be able to produce estima-
tors for M, ki, or more complex metrics if we fail on N first.
This constitutes therefore a necessary and nontrivial first
step, as shown in the following sections.

III. INFERRING N: CHARACTERIZATION OF THE
PROBLEM

Before proceeding to the construction of estimators for N,
as we will do in Sec. IV, it is useful to first better understand
the structural elements of the problem. In particular, the fol-
lowing analysis provides insight into the structure of the un-
derlying “population,” the relative frequency of the various
“species,” and the impact of these factors on the problem of
inferring N. For the sake of exposition, and as discussed in
the previous section, we adopt here the convention of mod-
eling Internet traceroute routing, to a first approximation, as
“shortest-path” routing. The discussion could, however, be
extended to the case of other routing models.

A. The betweenness centrality

A crucial quantity in the characterization of traceroute-
like sampling is the so-called betweenness centrality, which
essentially counts for each vertex the number of shortest
paths on which it lies: nodes with large betweenness lie on
many shortest paths and are thus more easily and more fre-
quently probed �11,12�. More precisely, if Dhj is the total
number of shortest paths from vertex h to vertex j, and Dhj�i�
is the number of these shortest paths that pass through the
vertex i, the betweenness of i is defined as bi=	Dhj�i� /Dhj,
where the sum runs over all h , j pairs with j�h� i �30,31�.
It can be shown �32� that the average shortest path length
between pairs of vertices l is related to the betweenness cen-
tralities through the expression

	
i

bi = N�N − 1��l − 1� .

This may be rewritten in the form

N = 1 +
E�b�
l − 1

, �1�

where E�b� denotes the average betweenness centrality of the
nodes.

Empirical experiments suggest that the average shortest
path length l can be estimated quite accurately, which is not
surprising given the path-based nature of traceroute. The
problem of estimating N is thus essentially equivalent to that
of estimating the average betweenness centrality E�b�.

It turns out that many real world networks, and in particu-
lar Internet maps, have been found to display broad distribu-
tions of betweenness centrality values, with an approximate
asymptotical power-law shape �4�. Moreover our numerical
investigations—in the same spirit as Ref. �11�—show that
this power-law shape is robust with respect to traceroutelike
sampling, meaning that the real exponent of the asymptotic
power law can reasonably be estimated by the measured ex-
ponent.

Let us first emphasize that the betweenness distribution is
not expected to follow exactly a power law on the whole
distribution range. Instead, it is more realistic to picture the
distribution P�b� as a mixture distribution �33�:

P�b� = �P1�b� + �1 − ��P2�b� , �2�

where P1 is a distribution at low values b� �1,bmin�, for
some bmin small, and P2�b� is a distribution at large values
b� �bmin,bmax�, bmax�bmin that follows a power law P2�b�
=b−� /K. We note that this functional form is certainly not
exact and already contains some arbitrariness.

B. Using the betweenness centrality to estimate N

We now consider the task of estimating N in the case that
an ansatz similar to that in Eq. �2� holds true. As remarked,
this problem is equivalent to that of estimating E�b�. Under
Eq. �2�, the average E�b� in Eq. �1� is a weighted combina-
tion of two terms, i.e., E�b�=�E1�b�+ �1−��E2�b�. From the
perspective of the simple ansatz just described, the challenge
of accurately estimating E�b�—and hence N—can be viewed
as a problem of the accurate estimation of the two means
E1�b� and E2�b� and the weight �. The estimation of the first
part E1�b� requires knowledge of the betweenness of vertices
with “small” betweenness, i.e., of nodes i�V traversed by
relatively few paths. These are, however, precisely the nodes
on which we receive the least information from traceroute-
like studies, as they are expected to be visited infrequently or
not at all. The relative proportion � of such nodes seems
moreover to be similarly difficult to determine. As mentioned
earlier, this is a hallmark characteristic of the species prob-
lem, i.e., the lack of accurate knowledge of the relative num-
ber in the population of species observed comparatively less
frequently.

For the second mean E2, we obtain, since K=
bmin

bmaxb−�db:
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E2�b� =
1

K
�

bmin

bmax

b1−�db =
bmin

2−� − bmax
2−�

bmin
1−� − bmax

1−�

� − 1

� − 2
.

This leads to

E2�b� =
� − 1

� − 2
bmin

1 − ��−2

1 − ��−1 , where � =
bmin

bmax
.

Additionally, if the only origin of the cutoff bmax is the
finite size of the network, bmax can be defined by imposing
the condition that the expected number of nodes beyond the
cutoff is bounded by a fixed constant �3�

N 	 �
bmax




P�b�db � 1 ⇒ bmax � � �� − 1�K
�1 − ��N

1/�1−��

. �3�

Therefore, assuming that bmin�bmax, and thus K�bmin
1−� / ��

−1�, we obtain

bmax � bmin��1 − ��N�1/��−1� �4�

which gives for � the approached value

� � ��1 − ��N�1/�1−��

and, assuming that 1� �1−��N, we finally obtain

E2�b� �
� − 1

� − 2
bmin�1 − ��1 − ��N�−��−2�/��−1�� . �5�

E2�b� is therefore strongly dependent on the ratio �−1
�−2 . It

turns out, however, that the empirical values of � in the
actual Internet maps collected so far are very close to 2.
�Similarly, values close to 2 are obtained as well in many
models of heterogeneous networks �34,35�.� This implies a
highly unstable estimation of E2�b� with respect to the mea-
surement uncertainty in the value of �.

In summary, while it appears that both the average path
length l and the power-law shape parameter � can be esti-
mated in a fairly stable fashion from traceroutelike data in
and of themselves, this is likely insufficient to allow us to
obtain from them an accurate estimate of N. First, because
the uncertainties in estimates of � will be magnified in the
estimate of E2�b�, and second because the data can be ex-
pected to have little information for directly estimating � and
E1�b�. Moreover, the functional form assumed for P�b� itself
bears some arbitrariness, which introduces still more uncer-
tainty.

The above analysis both highlights the relevant aspects of
the species problem inherent in estimating N and indicates
the substantial difficulties of a classical parametric estima-
tion approach. One is led, therefore, to consider parameter-
free methods, such as those we develop in the next sections.

IV. ESTIMATION OF NETWORK SIZE

Starting from the knowledge of the observed number of
nodes N* in G*, we propose two estimators, both of which

essentially have the form N̂�N* /�, where �� �0,1� is a
data-dependent factor that inflates N*. The specific nature of
this factor in each case derives from a formal argument based
on statistical subsampling principles.

A. A resampling estimator

A popular subsampling method consists in resampling,
which underlies the well-known “bootstrap” method �36�.
Given a sample X*= �x1

* , . . . ,xm
* � from a population X

= �x1 , . . . ,xn�, resampling in its simplest form means taking a
second sample X**= �x1

** , . . . ,xl
**� from X* to study a certain

relationship between the first sample X* and the true popula-
tion X through the observed relationship between the second
and first samples X** and X*. We use a similar principle here,
through which the relation between characteristics of G* and
G is inferred from the relation between a sample G** of G*

and G* itself.
Let us denote by nS

* and nT
* the number of sources and

destinations used for the resampling performed on G*. The
corresponding densities are denoted by qS

*=nS
* /N* and qT

*

=nT
* /N*. Now, consider the quantity N* /N, i.e., the fraction

of nodes discovered through traceroute sampling of G, which
we will call the “discovery ratio.” The expected discovery
ratio E�N* /N� has been found to vary smoothly as a function
of the fraction qT=nT /N of targets sampled, for a given num-
ber nS of sources �12,14�. Our resampling-based estimator is
based on the assumption that the sampled subgraph G* is
sufficiently representative of G so that a sampling on G* simi-
lar to that used in its obtention from G yields a discovery
ratio similar to the fraction of nodes discovered in G. For-
mally, it corresponds to the following property:

�qS = qS
*

qT = qT
* � ⇒

E�N**�
N* =

N*

N
, �6�

where the expectation E�N**� is with respect to whatever
random mechanism drives the choice of source and target
sets S* and T* on G*.

The condition of equal discovery rates can be rewritten in
the form N�N*�N* /E�N**��. The quantity E�N**� can be es-
timated by repeating the resampling experiment a certain
number B of times, compiling subgraphs G1

** , . . . ,GB
** of sizes

N1
** , . . . ,NB

**, and forming the average N̄**= �1/B�	kNk
**.

Substitution then yields

N̂RS = N* N*

N̄**
�7�

as a resampling-based estimator for N.
Note, however, that its derivation is based upon the

premise that qS
*=qS and qT

* =qT, and qS, qT are in fact un-
known �i.e., since N is unknown�. This issue is addressed in
the following way: we first replace the hypothesis qS

*=qS by
nS

*=nS, since typically the number of sources is very small
and nS is a more relevant quantity than qS �11,12�. We have
moreover performed numerical studies on networks with
various topological characteristics, namely, a Barabási-
Albert �BA� network and an Erdös-Renyi �ER� network,
which are prototypical examples of heterogeneous and ho-
mogeneous networks, respectively. We have also used a real
Internet map obtained from the Skitter project �see Sec. V for
more details�. These empirical studies, using uniform ran-
dom sampling of source and target nodes, suggest that the
modified assumption
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�nS = nS
*

qT = qT
* � ⇒

E�N**�
N* =

N*

N
, �8�

holds reasonably well over a broad range of sampling ratios,
as shown in Fig. 1.

The equation qT=qT
* is moreover rewritten in the equiva-

lent form
nT

*

nT
= N*

N . The hypothesis �8� then implies the follow-
ing identity, which involves only measurables or known
quantities

�nS = nS
*

qT = qT
* � ⇒

E�N**�
N* =

nT
*

nT
. �9�

As depicted in Fig. 2 for the BA network, this suggests a
simple, dichotomic method to adjust nT

* until the relation �9�
holds, by searching the intersection point of the curves �x
=nT

* /nT ,y= N̄** /N*� and �y=x�. The value of N̄** for the ap-

propriate nT
* is then substituted into Eq. �7� to produce N̂RS.

In practice, one may either use a fixed value of B �recall that
B denotes the number of times the resampling is performed
to get an estimation of E�N**�� throughout or, as we have
done, increase B as the algorithm approaches the condition

nT
* /nT� N̄** /N*.

B. A “leave-one-out” estimator

Another popular subsampling paradigm is the “leave-one-
out” strategy underlying such methods as jack knifing and
cross-validation �36�. The same underlying principle may be
applied in a useful manner here to the problem of estimating
N, in a way that does not require the assumptions underlying
Eq. �7�, as we now describe.

Recall that V* is the set of all vertices discovered through
a traceroute study, including the nS sources S= �s1 , . . . ,snS

�
and the nT targets T= �t1 , . . . , tnT

�. Our approach is to connect
N to the frequency with which individual targets tj are in-
cluded in traces from the sources in S to the other targets in
T \ �tj�. Accordingly, let V�−j�

* denote the number of vertices
discovered by traces to targets other than tj, and define � j

= I�tj �V�−j�
* � to be the indicator of the event that target tj is

not “discovered” by traces to any other target �i.e., � j =1 if tj
is not discovered by traces to the other targets and � j =0,
otherwise�. The total number of such targets can be written
as X=	 j� j. The basic idea of the estimator is to derive a
relation between X and N. The measure of X during a sam-
pling experiment will then allow one to estimate N.

We assume that, given a preselected set of source nodes
�chosen either randomly or not�, the set of targets is chosen
at random from the remaining vertices in V. The probability
that target tj is not discovered by the paths to other targets is
then simply given by

Pr�� j = 1�V�−j�
* � =

N − N�−j�
*

N − nS − nT + 1
, �10�

where N�−j�
* = �V�−j�

* �. Note that, by symmetry, the expectation
E�N�−j�

* � is the same for all j: we denote this quantity by
E�N�−�

* �. As a result, we obtain

E�X� = 	
j=1

nT

Pr�� j = 1�V�−j�
* � =

nT�N − E�N�−�
* ��

N − nS − nT + 1
. �11�

Rewriting this equation to isolate N, we have

N =
nTE�N�−�

* � − �nS + nT − 1�E�X�

nT − E�X�
. �12�
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FIG. 1. A comparison of the quantities N* /N and E�N**� /N*, as
a function, respectively, of qT=nT /N and qT

* =nT
* /N*, for the three

networks described in Sec. V. Here nS=nS
*=10. The top row shows

the averages of N* /N and E�N**� /N* over ten realizations of G*.
The bottom row shows the average of the difference of these two
quantities, relative to N* /N, over the same ten realizations. The
comparison in the top row confirms the validity of the assumption
�8� underlying the resampling estimator derived in Sec. IV A, while
the comparison in the bottom row indicates that better performance
of the estimator can be expected with increasing qT �one standard
deviation error bars are smaller than the symbol size in most cases�.
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FIG. 2. Illustration of the obtention of the resampling estimator,
in the case of a BA graph �see Sec. V for more details on the
networks� of size N=105. The initial sampling was obtained with
nS=10 sources and nT=104 targets �qT=0.1�, yielding a graph G* of
size N*=33 178. The circles show the ratio of the average size of

the resampled graph G**, N̄** /N*, as a function of the ratio nT
* /nT,

with nS
*=nS=10 sources. The error bars give the variance with re-

spect to the various placements of sources and targets used for the
resampling. The straight line is y=x and allows one to find the value

of nT
* such that nT /nT

* =N* / N̄**.
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An estimator for N may be obtained from the previous
expression �12� by estimating the unknown components on
the right-hand side, namely, E�N�−�

* � and E�X�. It seems natu-

ral to use the unbiased estimators N̄�−�
* = �1/nT�	 jN�−j�

* and X
itself, which is measured during the traceroute study. How-
ever, while substitution of these quantities in the numerator
of Eq. �12� is straightforward, substitution of X for E�X� in
the denominator can be problematic in the case that X=nT.
Indeed, when none of the targets tj are discovered by traces
to other targets, as is possible if qT=nT /N is small, N will be
estimated by infinity. A better strategy is to estimate the
quantity 1 / �nT−X� directly. This produces the estimator �see
Ref. �37� for the technical details, as well as an estimate of
the variance of this estimator�

N̂L1O =
nT + 1

nT
·

nTN̄�−�
* − �nS + nT − 1�X

nT + 1 − X
. �13�

The primary assumption underlying this derivation is the
condition that N�−j�

* �N�−j��
* �N�−j,−j��

* , where N�−j,−j��
*

= �V�−j�
* �V�−j��

* �. This condition is well motivated by empiri-

cal findings in the literature �as well as our own numerical
experiments�, in that it is equivalent to saying that the unique
contribution of discovered vertices by traces to any one or
any pair of target vertices is relatively small. For example,
using data collected by the Skitter project at CAIDA �18�, a
fairly uniform discovery rate of roughly three new nodes per
new target, after the initial 200 targets, has been cited �38�.

Note that this condition also implies that N�−j�
* �N*, for all

j, which suggests replacement of N̄�−�
* by N* in Eq. �13�.

Upon doing so, and after a bit of algebra, we arrive at the
approximation

N̂L1O � �nS + nT� +
N* − �nS + nT�

1 − w* , �14�

where w*=X / �nT+1�. In other words, N̂L1O can be seen as
counting the nS+nT vertices in S�T separately, and then
taking the remaining N*− �nS+nT� nodes that were discov-
ered by traces and adjusting that number upward by a factor
of �1−w*�−1. This form is in fact analogous to that of a
classical method in the literature on species problems, due to
Good �39�, in which the observed number of species is ad-
justed upwards by a similar factor that attempts to estimate
the proportion of the overall population for which no mem-
bers of species were observed. Such estimators are typically
referred to as coverage-based estimators, and a combination
of theoretical and numerical evidence seems to suggest that
they enjoy somewhat more success than most alternatives
�28�.

V. NUMERICAL RESULTS

A. Simulation study

1. Methodology

We examined the performance of the proposed estimators
using a methodology similar to those developed in Refs.

�9,12,14�. The idea is to start from known graphs G of given
size N, having various topological characteristics, equipped
each with an assumed routing structure. For each graph G, a
traceroutelike sampling is performed, yielding a sampled
graph G*. The estimators N̂RS and N̂L1O are then computed
and compared with both the size of the sampled graph G* and
the original size N. The process is repeated a number of
times, for various choices of source and target nodes, and for
different values of the sampling effort, i.e., of the numbers of
sources and targets nS and nT, and for various values of the
initial size N. A performance comparison of the various es-
timators is then made by comparing values of N̂ /N, for N̂
=N*, N̂RS, and N̂L1O.

We present here the results obtained on three network
topologies, two synthetic and one based on measurements of
the real Internet. The synthetic topologies were generated
according to �i� the classical Erdös-Rényi �ER� model and
�ii� the Barabási-Albert �BA� model of scale-free networks.
These models yield indeed the simplest and most well-
known examples of graphs with homogeneous and heteroge-
neous degree distributions, respectively, and allow us there-
fore to test the proposed estimators on networks with very
different topological characteristics. None of these models is
intended to give a faithful representation of the Internet, and
we therefore use them with illustrative purposes. However,
as the ER and BA topologies lack important characteristics
of the real Internet, such as clustering, complex hierarchies,
etc., as a third network we used an Internet map from the
Skitter project �40�, which consisted in a traceroute sample
taken in May 2006 from 18 sources sending probes towards
445 768 destinations, all around the world �41�. These three
topologies were chosen as best representatives from a larger
set of topologies that we actually used for our experiments,
which were either synthetic �variations of the Barabási-
Albert model, random graphs with power-law degree distri-
butions� or coming from actual Internet maps �MERCATOR
�42� Internet map from 1999, and CAIDA �18� Internet map
from 2003�, and which yielded very similar results to the
ones presented here.

More precisely, we have used randomly generated ER and
BA networks with average degree 6, and sizes N ranging
from 103 to 106 nodes. The Internet sample from Skitter
yielded a graph with N=624 324 nodes and M =1 191 525
edges. Given a graph G, and a chosen set of values for N, nS,
and nT, a traceroutelike study was simulated as follows. First,
a set of nS sources S= �s1 , . . . ,snS

� were sampled uniformly at
random from V and a set of nT targets T= �t1 , . . . , tnT

� were
sampled uniformly at random from V \S. Paths from each
source to all targets were then extracted from G, and the
merge of these paths was returned as G*. Shortest path rout-
ing was used in collecting these simulated traceroutelike
data, based on standard algorithms �43�. Unique shortest
paths were forced by breaking ties randomly. After initial
determination, routes are considered fixed, in that the route
between a source i�S and a vertex v�V is always the same,
independent of the destination target j�T.

2. Simulation results

The plots in Fig. 3 show a comparison of N* /N, N̂RS/N,

and N̂L1O /N, for nS=1, 10, and 100 sources, as a function of
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qT. We note that nS=1 is a very pessimistic case that, how-
ever, allows us to test the performance of the estimators in
extreme cases. Values of 10 or 100 are more realistic, while
the most recently launched Internet mapping projects aim at
the use of thousands of sources �22�. A value of 1 for these
ratios is desired, and it is clear that in the case of both the
resampling and the “leave-one-out” estimator that the im-
provement over the trivial estimator N* is substantial. In-
creasing either the number of sources nS or the density of
targets qT yields better results, even for N*, but the estimators
we propose converge much faster than N* towards values
close to the true size N.

Between the resampling and the “leave-one-out” estima-
tor, the latter appears to perform much better. For example,
we note that while both estimators suffer from a downward
bias for very low values of qT, this bias persists into the
moderate and, in some cases, even high range for the re-
sampling estimator. This is probably due to the fact that the

basic assumptions underlying the derivation of N̂RS are only

approximately satisfied, while for N̂L1O, the underlying hy-
potheses are indeed well satisfied. Notice, however, that the
“leave-one-out” estimator has a larger variability at small
values of qT, while that of the resampling estimator is fairly
constant throughout. This is because the same number B of

resamples is always used in calculating N̂RS in Eq. �7�, for all
qT, and the uncertainty can be expected to scale with B, but

in calculating N̂L1O in Eq. �13�, the uncertainty will depend
on nT �and hence on qT�.

In terms of topology, estimation of N appears to be easiest
for the ER model. Even N* is more accurate, i.e., the discov-
ery ratio is larger. Estimation on the Skitter graph appears to
be the hardest, likely because the Skitter graph has a much
higher proportion of low-degree vertices than the two syn-
thetic graphs, which therefore lie on very few paths and are
very difficult to discover. Interestingly, however, the perfor-
mance of the “leave-one-out” estimator seems to be quite
stable in all three graphs. On a side note, we mention that the

resampling estimator behaves in a rather curious, nonmono-
tonic fashion in two of the plots, as qT grows. At the mo-
ment, we do not have a reasonable explanation for this be-
havior, although we note that it appears to be limited to the
case of the BA graph.

In Fig. 4, we investigate, at fixed nS and qT, the effect of
the real size of the graph N. The estimators perform better
for larger sizes, while N* /N on the contrary decreases. This
is due to the fact that the sample graph G* gets larger, pro-
viding more and richer information, even if the discovery
ratio does not grow. The odd nature of the results for the BA
graph comes from the peak associated with the resampling
estimator mentioned earlier; see Fig. 3.

We have also considered the case of fixed numbers of
sources and targets, for increasing size N; such a scenario
would be faced if more and more Internet mapping efforts
were not deployed with a growing Internet network. As
could intuitively be expected, the quality of the estimators

N̂RS and N̂L1O then gets worse as N increases, as shown in

Fig. 5, but N̂L1O still performs remarkably well.

B. A small internet experiment

Our long-term interest is in the reliable estimation of ar-
bitrary router-level topology characteristics from traceroute
data. The case of estimating N has been studied above pri-
marily as an important first step. However, if estimation of N
alone were the only goal, there are natural alternatives that
one might consider, and these could provide us with useful
sources of additional evaluation. For example, an experiment
could use ping, a command that is able to test the reachabil-
ity of any IP address: testing the response of some sufficient
number n of randomly chosen IP addresses could yield an
estimator â of the fraction of “alive” addresses and, in turn,

an estimator N̂ping=232â that is much simpler than either of
those proposed in this paper.

We have performed such an experiment on the Internet. A
total of n=3 726 773 ping were sent from a single source,
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yielding 61 246 valid responses �for a 1.64% response rate�,
and resulting in an estimate N̂ping=70 583 737. We then per-
formed a traceroute study from the same source to the 61 216
unique IP addresses obtained from the ping experiment, and
calculated a “leave-one-out” estimate on the resulting G* of

N̂L1O=72 296 221. Of course, neither of these numbers are
intended to be taken too seriously in and of themselves. The
point is that, while the estimator from traceroute data is ar-
guably less intuitive and direct in its derivation than that
from the ping data, for the particular task of estimating N, it
nonetheless produces roughly the same number. And, most
importantly, while the ping data would of course not be use-
ful for estimating M or degree characteristics, for example,
the use of traceroute measurements, which produce an entire
sampled subgraph G*, does in principle allow for the estima-
tion of either of these quantities.

VI. CONCLUSIONS

In this paper, we have investigated the problem of correct-
ing the inherent sampling biases of path-based samplings,
which are commonly used to obtain partial maps of complex
networks, and in particular of the Internet. We have shown
how to recast this problem in the framework of the so-called
“species” problem and, as a first illustrative case, we have
focused on the issue of estimating the number N of nodes in
the network. We have derived two different estimators based
on subsampling principles. These estimators have then been
tested numerically on networks with different topological
characteristics, equipped with a simple model of traceroute-
like routing. The numerical results have clearly shown the
feasibility and interest of such approaches. As could be ex-
pected, the quality of the estimators increases with the initial

sampling effort, i.e., with the number of sources and density
of targets of the traceroute sampling. In real Internet map-
ping experiments, this density is, of course, unknown; re-
peating the computation of the estimators for various experi-
ments with increasing probing efforts should, however, allow
us to obtain more and more reliable results. Moreover, while
the number of sources has traditionally been quite small,
recently proposed Internet mapping initiatives appear to be
moving away from that trend �e.g., Ref. �22��. Our results
suggest that, with larger numbers of sources, quite accurate
estimates of N may be obtained even at very low levels of
target density.

Future work will need to address the estimation of other
network characteristics, such as M or degrees ki. In this re-
gard, while our results showed that the “leave-one-out” esti-
mator performed noticeably better than the resampling esti-
mator for estimating N, nevertheless the resampling
estimator should not be summarily dismissed. While the
derivation of the “leave-one-out” estimator is quite specific
to the problem of estimating N, the derivation of the resam-
pling estimator is general and independent of what is to be
estimated. For example, it is straightforward to specify con-
ditions for M analogous to those specified for N in Eq. �8�,
and the results of initial experiments shown in Fig. 6 indicate
that a resampling estimator yields similar improvements over
the observed value M*= �E*� as seen in estimating N.

Nevertheless, our preliminary work suggests that estima-
tion of the number of edges M along the lines of the “leave-
one-out” estimator is already a more challenging problem. At
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some level �in a manner that can be made precise�, the esti-
mation of N is implicitly a problem closer to that of estimat-
ing the proportion of “species” unobserved �i.e., note the role
of w* in the L1O estimator�, while the estimation of M is
more explicitly a problem of estimating the number of “spe-
cies” unobserved. The former type of problem is known to
be easier than the latter type. Estimation of degrees ki can be
expected to be of even greater difficulty, given the compara-
tively low effective sample size per node i. Strategies that
borrow strength across nodes likely will be necessary, such
as the theoretical proposals in Ref. �29�.
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