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SUMMARY

We present a modeling framework for detection of potentially anomalous structure in aggregate
spatial disease incidence data in a manner sensitive to localization at multiple scales and/or positions.
The key technical contribution is the re-casting of the components of a multiscale disease mapping
methodology, recently introduced by the authors in an earlier paper, into a form appropriate for
hypothesis testing. In particular, we describe how hypotheses of spatially clustered variations in disease
incidence may be linked in one-to-one correspondence with collections of hypotheses on the values of
certain multiscale parameters associated with a user-defined hierarchy of nested partitions of an overall
spatial region. A Bayesian hypothesis testing methodology is developed in the context of a standard
Poisson measurement model, over the collection of possible multiscale hypotheses. We discuss the
specification of hyper parameters and prior distributions on the space of models. The methodology is
illustrated on both simulated and real data. Copyright c© 2005 John Wiley & Sons, Ltd.

1. Introduction

Two standard tasks in spatial epidemiology are the testing for and mapping of structure in
disease incidence data [1]. A large portion of the energy in this field arguably has gone towards
the development of methods for the latter of these tasks. However, recently more and more
focus is being given to methods of monitoring for detection of potentially anomalous structure
in data reporting incidence of a given disease(s). Such methods tend to take the form of spatial
or spatio-temporal tests of ‘clustering’ and similar ‘atypical’ patterns in disease incidence data.

It has been noted (e.g., [1]) that in spatial epidemiology, as in most other geo-spatial fields
of study, the concept of scale plays an important role in analysis and inference. Specifically,
underlying patterns of disease incidence often have an intrinsic scale(s). As a result, choice of
the operable scale of an analysis (e.g., tract size, radius of a scan region, etc.) plays a key role
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in determining the potential of the analysis to extract the relevant spatial information on the
disease. For contexts in which multiple scales are present and at different locations, a so-called
‘multiscale’ analysis would be desirable, in which the data are analyzed simultaneously across
a range of scales and positions within scale. And ideally, such an analysis would be done in a
manner that effectively decouples information at each scale and each position within scale, so
as to allow for the isolation of each such component of information and its separate assessment.
The quintessential example of such techniques are those based on wavelets, in which an object
is decomposed with respect to an orthonormal basis of functions that are localized in both
scale and position. See [2], for example.

Unfortunately, classical wavelet-based methods are most appropriate for regularly spaced
signal and image data and, without modification, are difficult to apply directly to the type
of irregularly spaced data typically encountered in geo-spatial applications. In recent years,
however, a number of efforts have been directed towards the explicit extension of multiscale
principles and structures to these types of applications [3, 4, 5, 6]. With respect to spatial
epidemiology, we have recently introduced a framework for multiscale disease mapping that
is, to the best of our knowledge, the first such framework [7]. Here, in the present paper,
we re-cast our previous framework for the purpose of testing for localized anomalous spatial
variations in disease incidence data in a similarly multiscale fashion.

Our proposed framework exploits the fact that, under the standard Poisson measurement
model for aggregate count data, hypotheses of spatially localized variation in disease incidence
can be usefully linked in one-to-one correspondence with collections of hypotheses on the values
of certain multiscale parameters associated with a user-defined hierarchy of nested partitions of
an overall spatial region. Hence, the problem of finding localized anomalous spatial variations
in the data is replaced by one of finding various patterns within a collection of local hypotheses
indexed by position and scale. We develop a Bayesian hypothesis testing machinery to evaluate
and compare models within this collection, and show that such comparisons may be done in a
computationally efficient manner, given user-specified values for the hyperparameters and the
prior probabilities for hypotheses.

The organization of this paper is as follows. In Section 2 we describe necessary background, in
the form of multiscale likelihood factorizations of Poisson count models and the correspondence
between spatial and multiscale parameterizations. In Section 3, we describe our testing
framework and we examine the relative effect of different choices for the hyperparameters
and such. The application of our framework is explored in Sections 4 and 5 using simulated
and real data, respectively. Some additional discussion may be found in Section 6.

2. Background

2.1. Multiscale Factorization and Reparameterization

LetD be a spatial region of interest. We will represent the occurrences of cases of a given disease
by a point process {Y (s) : s ∈ D} that, conditional on an intensity process {µ(s) : s ∈ D},
will be taken to be Poisson. We will assume that measurements of the process Y (·) are made
available in aggregate form i.e., in the form YB |µB ∼ Poisson(µB), where µB ≡

∫

B
µ(s)ds

for subregions B ⊂ D. Models for the process µ(·) will be specified later, in Section 3.

As in [7], our notion of a multiscale model is associated with a collection B(J) =
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2 M. M. LOUIE, E. D. KOLACZYK

{{Bj,k}
Nj

k=1}
J
j=0 of J + 1 nested partitions of D. That is, the Bj,k represent subregions in

D at spatial scales j = 0, 1, . . . , J and relative positions k = 1, . . . , Nj within scale, such that

⋃Nj

k=1Bj,k = D and
⋃

k′∈ ch(k)Bj+1,k′ = Bj,k . (1)

Here, for a given choice of j and k, ch(k) denotes the set of indices k′ for which Bj+1,k′ ⊆ Bj,k.
The succession of scales j = J, J − 1, . . . , 0 corresponds to an assumed hierarchy of

aggregations of the original subregions to coarser and coarser levels. In spatial epidemiology,
geo-political considerations often drive the choice of subregions chosen. Indeed, such
considerations may in fact dictate, or at least limit, such choices, since the conventions adopted
by relevant government statistical agencies (e.g., census tracts) tend to be dominant. However,
the integration of GIS technologies with spatial epidemiology has led to an increased ability
for users to efficiently explore alternative hierarchies (at least at scales coarser than that of
the original observations).

By way of a simple, context-free illustration, we will often refer to the hierarchy shown in
Figure 1 for reference throughout much of this paper. Note that corresponding to this hierarchy
is a tree – the canonical ‘quad-tree’. This natural connection with trees has inspired the use
of tree-based terminology in the multiscale modeling literature. Specifically, the single region
D at the coarsest scale j = 0 is said to correspond to the root of the tree; those subregions
at the finest scale j = J correspond to leaves. Similarly, a subregion Bj,k at scale j that
splits into subsubregions Bj+1,k′ , k′ ∈ ch(k), at scale j + 1, is said to be the parent, and
the subsubregions, the children. More generally, if for two subregions, say Bj,k and Bj′,k′ , the
latter can be arrived at from the former solely by moving down the tree in a direction away
from the root and towards the leaves, then Bj,k is called the ancestor of Bj′ ,k′ , and Bj′,k′ is
called a descendent of Bj,k.

Without loss of generality, we assume that our measurements correspond to those subregions
BJ,k at the finest scale J , and write these measurements as YJ,k = YBJ,k

. The random variables
YJ,k therefore will be distributed conditionally as independent Poisson variables with means
µJ,k = µBJ,k

. Note that for each successive spatial aggregation of subregions Bj,k, from one
scale to another, a similar aggregation of the measurement and mean variables may be defined:

Yj,k =
∑

k′∈ ch(k) Yj+1,k′ and µj,k =
∑

k′∈ ch(k) µj+1,k′ . (2)

Presumably each scale of variables may contain useful information about the process µ(·),
although which scale(s) are most useful for a given purpose typically will be unknown. A
simultaneous analysis of the Yj,k at all scales therefore is desirable, but is complicated by the
dependence of these variables. A multiscale factorization of the data likelihood can be used to
induce a particularly useful decoupling. Let Yj = (Yj,1, . . . , Yj,Nj

)T and let Y j+1,ch(k) denote
those measurements Yj+1,k′ for whom Bj+1,k′ ⊆ Bj,k. Define µj and µj+1,ch(k) similarly. Then
one can write

Pr (Y J |µJ) = Pr (Y0,1|µ0,1)

J−1
∏

j=0

Nj
∏

k=1

Pr
(

Y j+1,ch(k) |Yj,k,ωj,k

)

, (3)

where Y0,1|µ0,1 ∼ Poisson(µ0,1) and Y j+1,ch(k) |Yj,k,ωj,k ∼ Multinomial(Yj,k ; ωj,k), with

ωj,k = µ−1
j,k × µj+1,ch(k) . (4)
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The multiscale representation above is analogous to that of a classical orthonormal wavelet
basis expansion of a function and, as such, separates out the information in the original
measurements at the finest scale i.e., in Y J , into conditionally statistically independent
components as those measurements are aggregated across each successively coarser scale. Note
too that each component Y j+1,ch(k)|Yj,k is accompanied by its own unique parameter ωj,k. The
end result is an alternative representation of the original spatially indexed data and parameters
in a form that simultaneously separates out the information in both that is local to the scale
and position of each Bj,k. The reader is referred to [3] for a derivation of the above formulas,
and to [8] for background on and statistical properties of multiscale likelihood factorizations
and statistical methods based thereupon.

2.2. Comparison of Spatial versus Multiscale Parameterizations

The factorization in (3) will be central to the testing framework we introduce in Section 3. Our
approach is to characterize hypotheses of interest in the space of the multiscale parameters
(4). Accordingly, it is necessary to first explore more closely the relationship between spatial
and multiscale parameterizations in the context of disease incidence data.

Again adopting the notation of [7], we introduce a notion of relative risk by re-writing the
Poisson intensity parameters µJ,k, at the finest scale J , in the form µJ,k = θJ,keJ,k. Here eJ,k

denotes the expected counts in the ‘at-risk’ population in subregion BJ,k and θJ,k = µJ,k/eJ,k

represents the relative risk in BJ,k. We will assume the eJ,k to be fixed and known, deriving
perhaps from a separate assessment, user input, or a combination of the two. The assessment
may correspond to another data source (e.g., a demographic database) or, in the case of
spatio-temporal analysis, it may correspond to values from the preceding time period on a
region whose population is being tracked in time. It will also be useful to define an analogous
notion of relative risk at coarser scales j, writing θj,k = µj,k/ej,k, where the values ej,k are
defined recursively through the expression ej,k = 1

T ej+1,ch(k).

In this paper, we will take the task of detecting potential anomalies in aggregate disease
incidence data to mean finding deviations from uniformity in relative risk, with respect to the
expected count levels {eJ,k}, and we will aim to do so in a fashion sensitive to localization
of deviations in spatial scale and position. The multiscale parameters ωj,k in (4) capture a
natural sense of such localization. For example, note that if θJ,k ≡ θ∗, for some θ∗ > 0,
and all (J, k), then µj,k = θ∗ej,k for all (j, k) and, equivalently, ωj,k = ej+1,ch(k)/ej,k. So,
ultimately, detecting localized deviations in the relative risk from a constant θ∗ is equivalent to
detecting deviations in the ωj,k from the values ej+1,ch(k)/ej,k. We now consider two examples
in somewhat more detail.

First, suppose that ωj,k = ej+1,ch(k)/ej,k for all but a single index pair (j0, k0). It is useful
to understand the effect of this single deviation from uniformity at (j0, k0) on the various
intensity parameters µj,k. Begin by noting that we will continue to have µj,k = θ∗ej,k for
(i) all j ≤ j0, and (ii) all (j, k) for which j > j0 but Bj,k ∩ Bj0,k0 = ∅. On the other hand,
for Bj,k ⊂ Bj0,k0 , at least two such µj,k will differ from the corresponding θ∗ ej,k, since by
assumption ωj0,k0 6= ej0+1,ch(k0)/ej0,k0 but at the same time the constraint ω′

j0,k0
1nj0,k0

= 1
must hold. That is, for fixed j, among the set of all k for which Bj,k ⊂ Bj0,k0 , the total
discrepancy of the corresponding µj,k from the values θ∗ej,k will be zero, since the sum of
these µj,k must still equal θ∗ej0,k0 . So the effect of a deviation in a single multiscale parameter
is to induce a local ‘ripple’ in the underlying intensity, with elevation in some subregion(s) and
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a corresponding decrease in others.

More realistically, since there is usually particular interest in the case where the relative risk
is elevated locally in some manner (i.e., often referred to as a form of ‘clustering’), it is useful to
consider the effect on the multiscale parameters ωj,k when there is an elevation within a single
subregion. For example, suppose that µJ,k = θ∗eJ,k(1 + δ), with δ ≥ 0 generally and δ > 0 for
all BJ,k ⊂ Bj0,k0 , for some Bj0,k0 . Then (i) ωj,k = ej+1,ch(k)/ej,k for all j ≥ j0, and for all
(j, k) such that j < j0 and Bj,k ∩ Bj0,k0 = ∅, but (ii) ωj,k 6= ej+1,ch(k)/ej,k if Bj0,k0 ⊂ Bj,k.
In particular, in the latter case, that element of ωj,k corresponding to the unique subregion
containing (and possibly equal to) Bj0,k0 will be increased, and at least one of the others will
therefore be decreased. Thus, the effect of an elevation in Bj0,k0 is to make the multiscale
coefficients differ from their nominal value for all ancestor subregions of Bj0,k0 . Put another
way, a localized elevation in relative risk at a given scale induces a pattern of deviation across
a certain hierarchical subset of the multiscale parameters.

Note that the effect of a reduction in relative risk within a given subregion Bj0,k0 has
an analogous effect. Similarly, the effect of compilations of regions of increased and reduced
relative risk will result in a compilation of their induced effects on the multiscale coefficients.
However, the degree to which these effects may be separated and interpreted will depend on
a variety of factors, such as the proximity of the regions affected, the proportion by which
the relative risks are changed, etc. This phenomenon is analogous to that which arises in the
context of wavelet-based analyses of signals and images, where it is found that such methods
are best for the detection and estimation of relatively isolated structure. Examples include
changepoints and similarly sharp transitions in signals, and edges in images. Accordingly, it
can be expected that our proposed framework similarly will be most appropriate for identifying
the locations and scales of isolated disease clusters within a spatial region.

By way of illustration, consider the diagram in Figure 2. The initial square data space and
the collection of nested partitions fall under the quad-tree hierarchy illustrated in Figure 1,
such that each scale j, for j = 0, . . . , 4, has 2j × 2j partitions. The three numbers that appear
in each (sub)partition are respectively the value of the Poisson intensity parameter µj,k, the
appropriate element of the multiscale parameter vector ωj,k (or just µ0,1 at the coarsest scale),
and the index of the partition (j = scale, k = position). At the finest scale J = 4, in a 2 × 2
square in the uppermost northwest corner, we have set µ4,k = 21, while for the rest of the
spatial region, µ4,k = 7; that is, each of the intensities for the four pixels in the upper corner
are three times the intensity of the other pixels. The spatial intensities µj,k are printed in bold
for those partitions Bj,k containing this elevated region.

When we shift our focus to the multiscale parameters, we find that ω3,k = 0.25 × 14 for
all k = 1, . . . , 4J−1. Since all the parents at scale j = J − 1 = 3 divide up equally among
their children at scale J = 4, examination of the multiscale parameters between these two
scales reveals no evidence of localized elevation. However, upon aggregation from scale J = 4
to scale j = 3, we now find that the spatial intensity in this uppermost northwest corner is
µ3,1 = 84 while µ3,k = 28 for k = 2, . . . , 43. The corresponding multiscale parameters are now
ω2,1 = {0.5, 0.167, 0.167, 0.167}T , and ω2,k = 0.25 × 14 for k = 2, . . . , 42. So it is between
scales j = 2 and 3 that the first evidence is seen of the elevation in the uppermost northwest
corner. At subsequent coarser scales, we see a similar pattern in the upper northwest corner
with ω1,1 = {0.333, 0.222, 0.222, 0.222}T while ω1,k = 0.25 × 14 for k = 2, . . . , 4, and, at the
coarsest scale, ω0,1 = {0.27, 0.24, 0.24, 0.24}T . Note, however, that the localized elevation,
as seen in ω1,1 and ω0,1, is attenuated with decreasing scale due to repeated aggregation of
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information from non-elevated regions. A visual summary of the effects just described may be
found in Figure 3.

3. Multiscale Detection of Local Deviations in Relative Risk

3.1. A Bayesian Testing Framework

In this section we cast the task of finding local deviations in relative risk within a hypothesis
testing framework, and we adopt a Bayesian perspective in deriving our tests. We offer two sets
of tests: one general, aimed at detecting arbitrary deviations from uniformity, and the other
more specific, aimed particularly at detecting local elevations. In both cases, our approach is
to specify null and alternative hypotheses in the spatial domain implicitly, through the explicit
specification of collections of simple nulls and alternatives on the values of the ωj,k. In this,
we are proceeding in analogy to standard practice in Bayesian wavelet shrinkage methods
for nonparametric function estimation which, at their heart, are based on the principle of
coefficient by coefficient testing in the space of the wavelet coefficients of observed data. See [9],
for example.

Let γ ≡ {{γj,k}
Nj

k=1}
J−1
j=0 } be a collection of Bernoulli random variables. Letting γj,k indicate

whether (1) or not (0) the parameter vector ωj,k ‘deviates’ from ej+1,ch(k)/ej,k, we define the

local null and alternative hypotheses H
(0)
j,k : γj,k = 0 and H

(1)
j,k : γj,k = 1. Now let H be the set

of all models γ obtainable by combinations of H
(0)
j,k ’s and H

(1)
j,k ’s, with the obvious restriction

that only one of H
(0)
j,k and H

(1)
j,k may be included in any given model, for each (j, k). Define

H(0) to be the model in which γ ≡ 0. Detecting deviations from uniformity will be equated
with declaring in favor of models H ∈ H \H (0) under an appropriate posterior. The precise
form of our posterior will follow from the Poisson sampling model defined in Section 2 and
the specification of (i) a conditional prior density p ( {ωj,k} |γ), and (ii) a probability mass
function Pr(γ). While for completeness we could also specify a prior structure for the global
intensity µ0,1, given our focus on testing for the characteristics of the multiscale parameters
ωj,k and the factorization in (3), an explicit definition of this component is unnecessary.

3.1.1. Detecting Arbitrary Deviations from Uniform Relative Risk We concentrate first on the
case in which general deviations from H (0) are of interest. We model the γj,k’s as independent
Bernoulli random variables i.e., Pr(γ) =

∏

j,k α
γj,k

j,k (1 − αj,k)1−γj,k , for values {αj,k} in [0, 1].
Then, conditional on γ, we specify that

ωj,k | γj,k ∼

{

δ
ej+1,ch(k)/ej,k

, if γj,k = 0

Dirichlet(cjTej+1,ch(k)), if γj,k = 1,
(5)

where δ
ej+1,ch(k)/ej,k

indicates a point mass at ej+1,ch(k)/ej,k, T is a constant meant to capture
an overall level of relative risk in D, and the cj are scale-dependent hyperparameters whose
effect is to influence the relative variation within each scale. Finally, given γ and the ωj,k’s,
sampling from the conditional distributions Y j+1,ch(k)|ωj,k, Yj,k, according to the multinomial
distributions defined in (3) yields the observations in Y J .

Using standard calculations, it is easy to show that under this model the posterior evidence
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in favor of a hypothesis H ∈ H i.e., Pr(H |Y J) = Pr(γ|Y J ), for γ ≡ γ(H), is given by

Pr(γ|Y J ) =

J−1
∏

j=0

Nj
∏

k=1

ρ
γj,k

j,k (1 − ρj,k)1−γj,k , (6)

where

ρj,k =
Oj,k

1 +Oj,k
(7)

and

Oj,k =
Pr(γj,k = 1 | Y j+1,ch(k), Yj,k)

Pr(γj,k = 0 | Y j+1,ch(k), Yj,k)
=

αj,k

1 − αj,k
×

Pr(Y j+1,ch(k)|Yj,k, γj,k = 1)

Pr(Y j+1,ch(k)|Yj,k, γj,k = 0)
, (8)

with

Pr(Y j+1,ch(k) | Yj,k, γj,k = i) =
∫

Pr(Y j+1,ch(k) | Yj,k,ωj,k, γj,k = i) Pr(ωj,k | γj,k = i) dωj,k, i = 0, 1, (9)

so that

Pr(Y j+1,ch(k) | Yj,k, γj,k = 1) =
Γ (cj T ej,k)

∏nj,k

i=1 Γ
(

cj T ej+1,ch(k,i)

)

yj,k!
∏nj,k

i=1 yj+1,ch(k,i)!
×

∏nj,k

i=1 Γ
(

cj T ej+1,ch(k,i) + yj+1,ch(k,i)

)

Γ (cj T ej,k + yj,k)
, (10)

and

Pr(Y j+1,ch(k) | Yj,k, γj,k = 0) =
yj,k!

∏nj,k

i=1 yj+1,ch(k,i)!

nj,k
∏

i=1

(

ej+1,ch(k,i)

ej,k

)yj+1,ch(k,i)

. (11)

Here ch(k, i), in equations (10) and (11) refers to the i-th element of the set ch(k) i.e., the i-th
among the children of k.

From the above expressions we see that the posterior is itself a product of independent
Bernoulli random variables, with probability of success ρj,k for the (j, k)-th variable, where
the ρj,k are defined in terms of the posterior odds Oj,k, and the marginal data likelihoods
arising in the latter have the standard, closed-form expressions under a multinomial-Dirichlet
model. Therefore, from expression (6) we see that selecting the most likely model in H, which
corresponds to selecting the optimal combination of 0’s and 1’s, reduces to deciding whether
ρj,k or 1− ρj,k is larger, for each (j, k). But each ρj,k is a monotone increasing function of the

posterior odds Oj,k. So this problem is equivalent to choosing the hypothesis H
(i)
j,k, i = 0, 1,

that maximizes Pr(H
(i)
j,k|Y J ), for each (j, k).

The end result is that, given values of the αj,k and cj , comparison across hypotheses in H
may be done in a highly computationally efficient manner under this model, through direct
implementation of the formulas above. Of course, one might also wish to incorporate additional
structure into our model – modeling the cj ’s, for example – in which case an appropriate MCMC
sampling procedure may be necessary to explore the posterior model space. In that case, the
factorization structure inherent in (6), inherited from that in (3), should still be useful in
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simplifying the MCMC sampling. However, as we shall argue below, in Section 3.2, a choice of
cj ≡ 1 appears to be quite sensible in the empirical examples we have examined. Therefore, we
have chosen not to pursue this particular extension of our model here, but see [7], for example,
for a related extension in the context of disease mapping.

3.1.2. Detecting Local Elevation in Relative Risk Next consider the case in which deviations
from uniform relative risk are felt likely to occur only in the form of local elevations. That
is, analogous to the second example of Section 2.2, we restrict our attention to those models
H ∈ H \H(0) for which θJ,k ≥ 1 for all (J, k), with strict inequality holding for some spatially
localized collection(s) of measurement regions BJ,k. Note that such a collection of BJ,k at the
finest scale may or may not nest exactly within one of the coarser, user-specified subregions
Bj,k, at some scale j. While the case in which nesting does occur is useful here from a conceptual
viewpoint, a lack of nesting is likely to be more typical in practice. We explore the effect of
this issue in more detail in the simulations of Section 4, and comment as well in the discussion
of Section 6.

Now recall that if the risk is elevated for all BJ,k within some single coarser subregion Bj0,k0 ,
then there are two classes of behaviors among the multiscale parameters ωj,k. Those ωj,k at
scales j ≥ j0, and at scales j < j0 for which the corresponding Bj,k does not overlap with
Bj0,k0 , do not deviate from the nominal values ej+1,ch(k)/ej,k. But for each of those subregions
Bj,k containing Bj0,k0 , the ωj,k will deviate from the nominal values.

From a modeling perspective, we wish to reflect these relationships among the ωj,k in the
parameters γj,k. In particular, we want to use the γj,k to encode the hierarchical structure
among the ωj,k in the presence of elevation. We accomplish this goal by specifying that (i) if
γj,k = 1, for a given (j, k), then γj′,k′ = 1 for all (j′, k′) such that Bj,k ⊂ Bj′,k′ , but (ii) if
γj,k = 0, then γj′,k′ = 0 for all (j′, k′) such that Bj′ ,k′ ⊂ Bj,k. Put another way, if one pictures
a tree associated with the hierarchy of partitions {Bj,k}, such as the quad-tree in Figure 1,
and if the γj,k are used to ‘decorate’ the nodes of this tree, then the above conditions are
equivalent to saying that 1’s must be traceable in a path from any initial node to the root,
while 0’s propagate only 0’s in moving towards the leaves.

This type of structure occurs in a number of places in the multiscale modeling literature
(e.g., [10, 3, 11]). A common probabilistic model used to enforce this structure, while otherwise
allowing for stochastic variation, is a scale-recursive Markov model, where

Pr(γj,k = 1 | γj−1,aj−1(k) = 1) = βj,k

and
Pr(γj,k = 1 | γj−1,aj−1(k) = 0) = 0 .

Here aj−1(k) is the position index k′ of that ancestor subregion Bj−1,k′ that contains Bj,k, and
the βj,k are values in [0, 1]. At scale j = 0 the model specifies simply that Pr(γ0,1 = 1) = β0,1,
since B0,1 has no ancestor.

Adopting this model for a prior distribution on γ, we specify that

Pr(γ) =

J−1
∏

j=0

Nj
∏

k=1

Pr(γj,k | γj−1,aj−1(k)) , (12)

using the convention that Pr(γ0,1 | γ−1,a−1(k)) ≡ Pr(γ0,1). Given values for γ, let the values of
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8 M. M. LOUIE, E. D. KOLACZYK

the ωj,k and of Y J follow as previously. Then it is clear that the posterior has the form

Pr(γ |Y J) ∝
J−1
∏

j=0

Nj
∏

k=1

Pr(Y j+1,ch(k)|Yj,k, γj,k) Pr(γj,k|γj−1,aj−1(k)) . (13)

While the form of the posterior here is not quite as simple as in the setting of Section 3.1.1,
it is still in fact possible – given values for the βj,k and, if desired, the cj – to determine which
value of γ optimizes Pr(γ|Y J) in a computationally efficient manner. The algorithm used for
this computation is a dynamic programming algorithm that is a variation on the sort of bottom-
up, optimal tree-pruning algorithm that underlies the well-known CART methodology [12]. At

scale j = J − 1, a test of H
(0)
J−1,k versus H

(1)
J−1,k is made, for each k = 1, . . . , NJ−1, in a

manner analogous to the individual Bernoulli tests in Section 3.1.1. Next, at scale j = J − 2,
a comparison is made between (i) the choice γJ−2,k = 1, with the values of the descendant
γJ−1,k’s set to those optimal choices γ̂J−1,k just inferred, and (ii) the choice γJ−2,k = 0, with
all descendant γJ−1,k’s necessarily zero as well. This process continues, working from fine scales
to coarse, comparing local posterior models of increasingly larger size at each step, until at
scale j = 0 a single optimal vector γ̂ is returned. The total number of local comparison steps
is O(NJ ). See [3], for example, for additional details.

On a final note, we point out that if one prefers to use Bayes factors [13] for model selection,
these quantities are in fact the same in both the model of this section and that of Section 3.1.1.
But the space of possible alternative hypotheses in the former case is a restricted subset of
that in the latter case. In the numerical work presented in Sections 4 and 5, we have provided
results in the form of posterior probabilities.

3.2. Choice of Hyperparameters and Prior Probabilities on Hypotheses

We turn now to the issue of the effect on our tests of the values of the hyperparameters,
cj , and the prior probabilities on hypotheses, αj,k and βj,k. Because of the scale/position
decomposition of the posterior Pr(γ|Y J ) in both of our models, and because of the similarity
of the local posterior components in this decomposition under both models, we focus primarily
on the first model and examine just the behavior of the log-posterior odds ratio Oj,k in (8).

The local posterior probability Pr(γj,k|Y J) = ρj,k will be greater than or equal to 0.5 if
and only if logOj,k ≥ 0. Recall that this log-posterior odds is the sum of two components:
the log-prior odds log [αj,k/(1− αj,k)] and the logarithm of the ratio of the marginal data
likelihoods. The first takes the form of a logistic function in αj,k, and the second is a more
complicated function of T , cj , Y j+1,ch(k), and ej+1,ch(k). We assume that T , a measure of
the global relative risk on D can be set relatively easily, given the comparatively quite coarse
scale to which it corresponds. For example, in [7] the standardized mortality/morbidity ratio
(SMR) at scale j = 0 was used successfully as a plug-in estimate of T i.e., T̂ = Y0,1/e0,1. The
effect of the other parameters is the subject of the plots shown in Figures 4 and 5.

In Figure 4 is shown the value of logOj,k for the scenario underlying the schematic diagram
in Figure 2. For each of the scales j = 3, 2, 1, and 0, the log posterior odds is plotted as a
function of αj,k, for k corresponding to a quad Bj,k within or containing the region of elevation
in the upper left-hand corner. The value of cj has been set to 1, thus eliminating its role, while
the values of Y j+1,ch(k) have been set to their expected values µj+1,ch(k). Curves are shown
for a number of choices of relative risk parameter θJ,k in the elevated region (including the
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MULTISCALE DETECTION 9

choice θj,k = 1, corresponding to no elevation). At the highest scale, j = 3, the curves show no
evidence in favor of the alternative, as should be the case, except under relatively high values
of prior probability αj,k for the alternative. At the other three scales, we see various degrees
of evidence in favor of the alternative, increasing in the value of θj,k and decreasing overall as
j decreases. Note that in all of the plots we see that the basic logistic curve is simply shifted
vertically by an amount dictated by the log marginal likelihood ratio.

In Figure 5 we again show the value of logOj,k, for the same scenario as in Figure 4, but this
time as a function of cj , with αj,k = 1/2 (thus eliminating its role). In the Dirichlet model in
(5), as cj → ∞, the distribution approaches a point mass at ej+1,ch(k), which is equivalent to
the prior on ωj,k under the null model γj,k = 0. Hence, all of the curves in Figure 5 approach
zero for large values of cj . For smaller values of cj , the curves display various behaviors. At the
finest scale j = 3, the curves all decrease sharply as cj → 0. Again, this reflects the fact that
the relative risk, while elevated, is nonetheless constant in a nested subregion at this scale. At
the other scales, where the elevation can now be ‘felt’, there is generally a value of cj < 1 for
which logOj,k peaks, before decreasing smoothly as cj continues to decrease. The size of this
peak decreases with decreasing θj,k, within each scale j, and also decreases with decreasing
j, for each fixed value of θj,k. This latter behavior reflects the fact that the effect of a local
elevation in relative risk at a certain scale is ‘felt’ less and less at coarser scales.

Weighing the overall evidence provided by the above plots, we conclude that the value cj = 1
represents a reasonable, conservative choice, yielding a value of logOj,k ≈ 0 in the absence
of relative risk when αj,k ≈ 1/2. Further support for this choice may be found in [7], in the
context of disease mapping, where use of cj = 1 yields a multiscale estimator of relative risk
that is essentially a simple average of estimators in the two extreme cases of cj = 0 and cj = ∞.

Additionally, the plots in Figure 4 suggest that αj,k (and βj,k, by extension) plays a
potentially strong role primarily in the extremes, near zero or one, and a more moderate
role otherwise. In the special case of αj,k = 1/2 for all (j, k), the role of the αj,k in the test is
eliminated. Note that in aggregate this corresponds to assigning equal prior probability among
all of the hypotheses in H. This choice is in fact what we have used in the work underlying the
numerical results of Sections 4 and 5. Nevertheless, the real potential in our choice of priors
on the space of hypotheses is in the manner in which each aggregate hypothesis is broken
down into a collection of local hypotheses. In particular, if the user has substantive prior
information on the odds of deviations from uniformity in various localities, at various scales,
such as might come from pooling reports from administrative centers at different geo-political
levels, this information can be incorporated in a natural manner. Alternatively, hypotheses as
to the behavior of relative risk as a function of scale might be incorporated through the choice
of αj,k ≡ αj , for some set of J parameters {α0, . . . , αJ−1}. The effective use of the flexibility
allowed by this parameterization of priors on our hypotheses requires further study.

Such study might be aided by the derivation of expressions for spatial covariance under
various choices of prior, which should be feasible using calculations similar to those in [14]. It
is important to note that, unlike models defined with respect to a spatial indexing, such as
the hierarchical Bayes Poisson-lognormal model implemented in the application of Section 5,
the multiscale models here have correlation functions that decay in a manner governed by the
proximity of spatial regions Bj,k on the tree corresponding to the underlying spatial hierarchy.
This is in analogy to the temporal or spatial correlation structure induced by wavelet-based
models in the signal and image processing literatures. Such tree-based proximities, while not
equivalent to actual temporal or spatial distances, have been found to serve as useful proxies.
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Detailed spatial covariance expressions for models similar to those proposed here can be found
in [14].

4. Simulation

We conducted a simulation study, aimed at illustrating the potential of our multiscale detection
framework, as viewed from a handful of simple scenarios. The initial data space D was taken
to be a square region, and the nested hierarchy B(J) was defined through the generic quad-tree
structure as illustrated in Figure 1, a structure common in image processing and computer
vision. Specifically, D was partitioned into 2j×2j = 22j identical subregions, for j = 0, 1, . . . , 4,
so that each square subregion at scales j < 4 consists of four sub-subregions at scale j + 1. At
the finest scale J = 4, there were a total of 16 × 16 = 256 subregions, which we refer to as
‘pixels’, as is standard.

Simulations were conducted under a total of five different scenarios of landscape design. The
first landscape has uniform relative risk; that is, each pixel has a relative risk of one. The rest
of the landscapes each contain a single area of elevated relative risk. The area in Landscape
2 and Landscape 3, which we will refer to as A2, is comprised of 2 × 2 = 4 pixels, each pixel
with a relative risk of 3. We consider a larger elevated area in Landscape 4 and Landscape 5,
comprised of 4× 4 = 16 pixels, each also with a relative risk of 3. We will refer to this area as
A4. Landscape 2 and Landscape 3 differ in the location of A2 within each, as does the location
of A4 within Landscape 4 and Landscape 5. The different locations were chosen so as to allow
for examination of the effect on our detection framework of different degrees of nesting of the
elevated area within the elements of the nested hierarchy.

Figure 6 illustrates all five landscape designs. If we call the pixels at scale J = 4 ‘children’,
and subregions at scales j = 3, 2, and 1, ‘parents’, ‘grandparents’, and ‘great-grandparents’,
respectively, then landscapes 2 through 5 may be characterized as follows. Landscape 2 shows
A2 on the uppermost northwest corner, with the four children forming a single parent. The
A2 in Landscape 3 is located in the interior and is non-nested, that is, the four children each
originate from a different parent. The A4 in Landscape 4 is also located in the uppermost
northwest corner. Its 16 children form four parents and a single grandparent. Similar to
Landscape 3, the A4 in Landscape 5 is located in the interior and non-nested as well. Its
children originate from nine distinct parents, four distinct grandparents and four distinct
great-grandparents.

We chose the pixel-level expected counts eJ,k to be uniformly equal to 7, which resulted
in pixel-level mean parameters µJ,k = θJ,k eJ,k of either 1 × 7 = 7 or 3 × 7 = 21. The
hyperparameters cj were set to 1 for all j = 0, . . . , J−1, for the reasons described in Section 3.2,
and hence were effectively omitted from our study. Under this scenario, we generated 100
independent Poisson samples with intensity µJ,k for every location k, resulting in 100 data
sets of 256 observations for each of the five landscapes on D.

Operating under the testing framework of Section 3.1.2, we specified the values of the βj,k

implicitly by imposing the assumption that all models are equally likely a priori. Values of
the posterior Pr(γ|Y J), as a function of candidate models γ, are then provided by (13).
There are a variety of summaries of these posterior probabilities that could be examined to
gauge the potential of our framework for detecting and isolating the localized risk elevations
in our landscapes. A particularly useful set of quantities for visualization is the set of
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local marginal posterior model probabilities Pr(γj,k = 1|Y J), in that each such probability
summarizes the total posterior evidence for elevated risk in the region of the corresponding
partition element Bj,k. Under our choice of equally likely prior probabilities Pr(γ), these
marginal posterior probabilities are particularly easy to compute, as they are in fact equal
to Pr(γj,k = 1 | Y j+1,ch(k), Yj,k), which is the same as the quantity ρj,k under the general
model of Section 3.1.1. However, we note that higher order marginal distributions (e.g., of
γj,k, γj′,k′ | Y J ) do not share a similar equivalence under the two testing frameworks.

We calculated these local marginal posterior probabilities, for each pair (j, k), for each of the
100 data sets corresponding to each of the five landscapes. The averages of these quantities, as
a function of j and k, across data sets within landscapes, are presented in Figure 7, and serve
to indicate that the presence or absence of local elevation in relative risk is clearly ‘felt’ in our
detection framework. For example, consider the case of Landscape 1. Since Landscape 1 has
uniform relative risk we would not expect to see across scales any evidence of local elevation
in the form of Pr(γj,k = 1 | Y J) >> 0.5. In fact, the mean posterior probabilities across all
scales in Figures 7(1a)-7(1d) are between 0.4 and 0.6.

In Landscape 2, even for the area with elevated risk, all the parents at scale j = 3 are
dividing equally among their children at scale j = 4; hence, we should see no evidence of local
elevation, which is the case in Figure 7(2a). However, in the upper northwest corner beginning
at scale j = 2, the grandparent is dividing unequally among the 4 parents at scale j = 3; hence,
we see a localized elevation with posterior probability above 0.9 in this location and scale, as
presented in Figure 7(2b). For the subsequent coarser scales in Figures 7(2c) and 7(2d), we
continue to see a localized elevation in the upper northwest corner and a less pronounced
elevation in the overall region due to repeated aggregation of the data.

In Figure 7(3a) for Landscape 3, since A2 is non-nested with each child from a different
parent, we see immediately from scale 3 to 4 localized elevations pertaining to the four parents
in the uppermost northwest corner with posterior probabilities above 0.85. However, since all
grandparents at scale j = 2 divide equally among the parents at scale j = 3, there is no such
elevation exhibited in Figure 7(3b). Similar to Landscape 2, there is a localized elevation in
Figure 7(3c) and a less pronounced effect in Figure 7(3d).

Landscape 4 is similar to Landscape 2 with the exception that the localized elevation does
not arise until the division of the great-grandparents at scale j = 1 to grandparents at scale
j = 2 as in Figure 7(4c); otherwise, the grandparents divide equally among the parents as
does parents among their children, as indicated by the nearly uniform posterior probabilities
in Figures 7(4b) and 7(4a) respectively.

In Figure 7(5a) for Landscape 5, we note that there is a fairly large area with posterior
probabilities above 0.85 surrounding a smaller area with posterior probability below 0.4. This
smaller area corresponds to the only parent in A4 which divides equally among its children.
In Figure 7(5b), the 2 × 2 area in the center indicates the highest localized elevation in the
southeast region followed by the southwest and northeast regions, with the smallest effect in
the northwest. This corresponds directly with the number of descendants exhibiting elevated
risk. In other words while the grandparent at scale j = 2 in the northwest region has one
grandchild at scale J = 4 with elevated risk, the grandparent in the southeast region has nine
grandchildren with elevated risk while the grandparents in the southwest and northeast each
has three grandchildren with elevated risk. Figure 7(5c) indicates a similar trend in posterior
probabilities.

Taken together, the results in Figure 7 suggest that effective use may be made of our

Copyright c© 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 00:0–0
Prepared using simauth.cls



12 M. M. LOUIE, E. D. KOLACZYK

framework for detection of localized anomalous structure in aggregate disease incidence data.
In the next section we present confirmation of this potential, through the use of our framework
within the context of a comprehensive analysis of cancer mortality data.

5. Application to Tuscany Gastric Cancer Mortality Data

We applied our multiscale method to male gastric cancer mortality data obtained from the
Tuscan region of Italy during the period 1980-1989 [1, 15]. For our hierarchy of nested partitions
we took the set of nested subregions displayed in Figure 8, corresponding to three of the
five geo-political statistical units defined under the NUTS system (Nomenclature des Units
Territoriales Statistiques) used by the European community. In particular, shown in Figure 8
are the single Tuscan region itself (NUTS Level II), the nine provinces within that region
(NUTS Level III), and the 287 municipalities within those provinces (NUTS Level V). Italy
itself corresponds to a single subregion at NUTS Level I, while NUTS Level IV is not used in
that country. In the notation of this paper, the regional, provincial, and municipality levels
correspond to j = 0, 1, and 2, respectively. Data were obtained for males over 35 years of age
at the municipality level. Italian age specific rates for the same calendar period were used to
obtain expected numbers of deaths [15].

Figure 9 shows a map of the local marginal posterior probabilities for this data at the
provincial level i.e., Pr(γ1,k = 1 | Y J), for k = 1, . . . , 9. As in Section 4, in computing these
probabilities, all models were treated as equally likely a priori and the parameters cj were set
to 1 for all j. The figure indicates varying degrees of evidence for elevated risk throughout
the provinces of the Tuscan region. One province, (Massa-Carrara) has fairly strong evidence
against elevated relative risk within it. Two other provinces (Pistoia and Siena) have about
equal evidence for or against elevation. The rest of the provinces show strong evidence in favor
of elevation within. Among these latter provinces, the evidence for the provinces of Lucca,
Firenze, Pisa, and Arezzo is very strong, while that for the provinces of Livorno and Grosseto
is slightly less so.

The actual values of the probabilities Pr(γj,k = 1|Y J), for the 9 provinces and for the overall
Tuscan region, are shown in Table I. In addition, the optimal model γ̂ = argmax Pr(γ|Y J)
is given. The model most likely under the posterior indicates the presence of elevation among
provinces within the overall Tuscan region, and within all of the individual provinces except
Massa-Carrara and Pistoia. These results, which are based on the joint posterior over the full
vector γ, essentially confirm the conclusions drawn above based on examination of the local
marginal posteriors. The next 11 most likely models also are presented which, together with
the optimal model γ̂, make up just over 90% of the total mass under the posterior. Most of
these models confirm the entries in γ̂, particularly for those provinces with the highest local
marginal posterior values. For those provinces with lower values for these probabilities, it can
be seen that the evidence for elevation is correspondingly more mixed.

To supplement these results, we present disease maps from a multiscale analysis of this
mortality data [7] in Figures 10c and 10d, at the municipal level (j = 2) and provincial level
(j = 1), respectively. Additionally, disease maps summarizing the observed SMR, also at both
levels, can be found in Figures 10a and 10b. Both Figures 10a and 10c at the municipal level
indicate a potential severity in the northeast border of Tuscany, and to a lesser degree, at the
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provincial level as seen in Figures 10b and 10d. Twelve municipalities comprise the northeast
border, with the 4 most northern municipalities found in Firenze and the remaining 8 in
Arezzo.

Lastly, by way of comparison, we also present the results under a hierarchical Bayes Poisson-
lognormal model as implemented in [7]. We note that this is not a one-to-one comparison to
our multiscale hypothesis testing framework as the former presents results at each individual
and independent scale j, while the latter presents results at multiple scales j− 1 having taken
into account the individual information at scale j. Additionally, such purely spatial (mono-
scale) analyses are generally carried out for the data at the finest resolution J , while our
method takes into account the data at all scales j = 0, . . . , J . However, since the Poisson
log-normal model used here contains components to capture extra-Poisson variation, we can
assess whether a general clustering effect exists in the overall region [1, 16].

Specifically, in this model Yk ∼ Poisson(µk), as in our multiscale model, but the log spatial
mean is expressed as log µk = log ek + α + uk + vk, where α captures the overall level of the
log relative risk, and uk and vk are respectively the unstructured heterogeneity and clustering
components of extra-Poisson variation. We consider the quantity,

ψ =
sd(v)

sd(v + u)
, (14)

where sd(·) is the empirical marginal standard deviation function. The ψ is the proportion of
the extra-Poisson variation that is due to clustering. Details of this model can be found in [17].
A discussion on appropriate priors for vk and uk can be found in [18]. Using a Bayesian software
package BUGS [19] with one sampling chain, a 10000-iteration burn-in period and a 25000-
iteration production period, the posterior mean for ψ at the municipal and provincial levels
were found to be ψmun = .8902 and ψprov = 0.5567, indicating that the excess variability in the
data at each scale, especially at the municipality level, is due to clustering. The corresponding
maps summarizing the estimated relative risk for these models are presented in Figures 10e
and 10f. These maps also indicate a potential severity in the northeast border of Tuscany.

6. Discussion

Our goal here in this paper has been to lay out the basic framework for a multiscale
approach to detecting anomalous localized structure in aggregate disease incidence data.
We employ a Bayesian testing machinery to develop our detection mechanisms. The models
underlying this machinery are (intentionally) fairly minimal in their complexity and could be,
if desired, augmented in various manners. For example, as was pointed out in Section 3.1.1,
the hyperparameters cj might be provided with prior distributions and inferred as part of
the overall posterior-based inference procedure. Or, on a grander scale, one might seek to
incorporate our models into a spatio-temporal framework for biosurveillance, perhaps through
the specification of time-dependent multiscale parameters ωj,k. In addition, it would be
interesting to explore the extension of the multiscale modeling perspective to clustering of
other types of disease incidence data. For example, case-to-control data, or event data. In the
case of the latter, it seems that extensions to point process data of recent work by Jansen and
colleagues with multiscale models on two-dimensional irregular, triangulated meshes (e.g., [6])
would be promising.
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The technical details of the framework proposed here are analogous to those in our earlier
work on disease mapping [7]. Both are grounded upon the two key elements: (i) a multiscale
likelihood factorization, and (ii) the placement of prior distributions on the corresponding
multiscale parameters. They differ in the underlying inferential task for which they are designed
(i.e., estimation and testing, respectively), and as a result they differ in the nature of the priors.
In particular, while the priors here are either a point mass or a Dirichlet distribution, depending
on the underlying model (i.e., γ), in the disease mapping work a simple Dirichlet prior is used
alone. It would be natural, and indeed straightforward, to combine the two frameworks into a
single framework allowing for disease mapping with interpretable testing aspects, by adopting
mixtures of point mass and Dirichlet distributions. We have chosen not to do so here purely in
the interests of emphasizing the testing aspect of our approach and its connection to detection
and clustering.

Finally, we point out that many of the same research challenges surrounding the disease
mapping framework in [7] hold as well for the testing-based framework introduced here in
this paper. These include the modeling of edge effects, the role played by the standardization
inherent in the use of SMR-like statistics (i.e., through the role of the ej,k’s), and the use of
multiple and/or non-nested spatial hierarchies. The role played by the spatial hierarchy is an
issue that is particularly important to explore further. As mentioned in Section 4, and reflected
through our choice of landscapes in the simulations of that section, it is unlikely in practice that
the underlying spatial disease structure in a region will be localized precisely according to the
boundaries of subregions specified by a hierarchy. This is essentially the ‘spatial misalignment’
problem of Mugglin et al. [20], and is an aspect of the so-called ‘modifiable areal unit problem’
(MAUP) in Geography (e.g., [21, 22]).

From the perspective of the multiscale modeling literature, this issue is not unlike the
problem of using a fixed, orthonormal wavelet basis in the classical wavelet paradigm.
Specifically, due to the rigid constraints placed on wavelet locations by the condition of
orthogonality, it is often the case that a sharp feature in a signal or image will not line
up precisely with any one, single wavelet. The solution proposed in that literature is the
adoption of a much larger, redundant (i.e., non-orthogonal) system of wavelets. Inference then
becomes a more complicated task, due to the redundancy of information across the wavelets.
We are currently exploring, with colleagues in Geography, the extension of these concepts to
the context of spatial epidemiology and our multiscale modeling framework, in which the idea
of a redundant basis is replaced by that of a library of different spatial hierarchies.
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Table I. Results from the analysis of the Tuscan gastric cancer data. For each of the 9 Tuscan provinces,
the local marginal posterior probabilities Pr(γj,k = 1|Y J ) are given, as well as the 12 most likely
models under the full posterior. The Bayes optimal model γ̂ corresponds to the model with a rank
of 1. Size of the provinces, given in parentheses, corresponds to the number of municipalities within

each.

Model Rank
Province (size) Pr(γj,k = 1 | Y J) 1 2 3 4 5 6 7 8 9 10 11 12
Massa-Carrara (17) 0.212 0 0 0 0 1 1 1 0 1 0 0 0
Lucca (35) 0.994 1 1 1 1 1 1 1 1 1 1 1 1
Pistoia (22) 0.408 0 0 1 1 0 0 1 0 1 0 1 1
Firenze (51) 0.999 1 1 1 1 1 1 1 1 1 1 1 1
Livorno (20) 0.949 1 1 1 1 1 1 1 1 1 1 1 1
Pisa (39) 0.996 1 1 1 1 1 1 1 1 1 1 1 1
Arezzo (39) 0.999 1 1 1 1 1 1 1 1 1 1 1 1
Sienna (36) 0.544 1 0 1 0 1 0 1 1 0 0 1 0
Grosseto (28) 0.849 1 1 1 1 1 1 1 0 1 0 0 0
Tuscany (9) 0.999 1 1 1 1 1 1 1 1 1 1 1 1
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Figure 1. Schematic characterization of a nested spatial hierarchy (a so-called ‘quad-tree’).
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Figure 2. Illustration of the effect of a local elevation in relative risk on the multiscale parameters. The
three numbers that appear in each sub-partition are respectively the value of the Poisson intensity
parameter µj,k, the appropriate element of the corresponding multiscale parameter vector ωj,k (or just
µ0,1 at the coarsest scale), and the index of the sub-partition (j = scale, k = position). The spatial

intensities are printed in bold for sub-partitions containing elevated areas.
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(a) (b)

(c) (d)

Figure 3. Scale specific images of ωj,k corresponding to Figure 2
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Figure 4. For data Y J = µJ and uniform expected counts eJ,k, ∀(J, k), plot of log Oj,k versus αj,k for
θJ,k = {1, 2, 3, 4}. For the four plots, θJ,k = 1 is represented by a solid line; θJ,k = 2 by a dashed line;

θJ,k = 3 by an alternating dashed and dotted line; and θJ,k = 4 by a dotted line.
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Figure 5. For data Y J = µJ and uniform expected counts eJ,k, ∀(J, k), plot of log Oj,k versus log cj

for θJ,k = {1, 2, 3, 4}. For the four plots, θJ,k = 1 is represented by a solid line; θJ,k = 2 by a dashed
line; θJ,k = 3 by an alternating dashed and dotted line; and θJ,k = 4 by a dotted line.

Copyright c© 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 00:0–0
Prepared using simauth.cls



22 M. M. LOUIE, E. D. KOLACZYK

(1) (2)

(3) (4) (5)

Figure 6. Simulated landscape designs for illustrating performance of the multiscale hypothesis testing
framework. Design (1) corresponds to uniform relative risk. Designs (2) and (3) each contain a (shaded)
area of elevated risk comprised of 2 × 2 pixels. Designs (4) and (5) contain a larger area of elevated

risk comprised of 4 × 4 pixels.
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Figure 7. Average of the local marginal posterior probabilities, Pr(γj,k = 1 | Y J), over 100 samples,
corresponding to each of the five landscape designs in Figure 6. Figures #a-#d correspond to

Landscape #. Rows, from bottom to top, correspond to results at scales j = 0 to 3.
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Figure 8. Hierarchy of three nested partitionings of the Tuscan region of Italy: (a) region level, (b)
provincial level, and (c) municipality level.
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Figure 9. Map, at the provincial level, for posterior probabilities Pr(γj,k = 1 | Y J ), as found in Table I.
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Figure 10. Observed SMR at (a) municipal level and (b) provincial level. Multiscale empirical Bayes
estimates of relative risk at (c) municipal level and (d) provincial level. Estimates of relative risk based
on Poisson-lognormal model at (e) municipal level and (f) provincial level. Figures (c),(d) and (e) are

reproduced from [7].
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