

Practice Exam II

student:

Problem 1: Evaluate the integrals

$$\int_0^{\pi/2} \sin(x) e^{\cos(x)} dx$$

$$\int_0^1 x e^{3x^2} dx$$

$$\int x^2 e^{2x} dx$$

Problem 2: Sketch the region bounded by the curves

$$y = x^2 + 2x + 6, \quad y = 2x + 1.$$

Label the curves and determine any points of intersection. Find the volume of the solid obtained by rotating this region about the x-axis.

Find the volume of the solid obtained by rotating this region about the y-axis.

Problem 3: Solve the differential equations:

$$y' = y$$

$$y' = xy$$

$$xyy' = 1$$

Problem 4: Find a solution of the differential equation that satisfies the given initial condition:

$$y' = x + 2 \quad y(1) = 5$$

$$y' = y \quad y(0) = \pi$$

$$y' = xy + 2y \quad y(0) = 2$$

$$4yy' = e^{2x} \quad y(0) = \sqrt[4]{2}$$

Problem 5: Similar to one of the exercises 8, 9, 10 on page 538, or exercises 11, 12, 13 on page 558.

Problem 6: Give examples sequences satisfying the following conditions:

Give an example of a divergent sequence.

Give an example of nonconstant sequence converging to 5.

Give an example of a strictly decreasing sequence which converges to π .

Give an example of a nonconstant sequence that converges to 1, and is neither decreasing, nor increasing.

Give an example of a divergent bounded sequence.

Give an example of a convergent sequence which has among its terms the numbers -2 and 1 .

Problem 7: For each of the following sequences/series, decide whether it is divergent or convergent, and if it convergent, find its limit.

Summer Term I
Kostadinov

MA124 Calculus II
Boston University

Problem 8: Convergent/Divergent Series Testing, radius and interval of convergence of power series.

Problem 9: Application of power series, representation of function as a power series, McLoren and Taylor series

Problem 10: State the Fundamental Theorem of Calculus, the definition of convergent sequence with limit 3, the Integral test for convergence.