Summer Term I Kostadinov MA124 Calculus II Boston University

Quiz No.19

student:

Problem 1: The sum of the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ is a well known function. Which one?

Problem 2: Write the expansion of $\frac{1}{1-x}$ as a power series. What is the interval of convergence?

Problem 3: Knowing that $\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ for all x, write down the expansion of $\cos(x)$ as power series.

Problem 4: Using your answer for problem 3 and differentiation, give the expansion as a power series of the function $\frac{1}{(1-x)^2}$.

Problem 5: Using your answer for problem 3, give the expansion as a power series of the function $\ln(1-x)$. What is the radius of convergence?

Summer Term I Kostadinov

.

MA124 Calculus II Boston University

Problem 6: Maclaurin Series. If f has a power series expansion $f(x) = \sum_{n=0}^{\infty} c_n x^n$ for some interval |x - 0| < R, then the coefficients are given by $c_n = \dots$

Problem 7: Taylor Series. If f has a power series expansion around a $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ for some interval |x-a| < R, then the coefficients are given by $c_n = \ldots$

Problem 8: Suppose e^{2x} has a power series expansion. Find the first four term of the series.

Problem 9: Find the expansion of the function $x^2 + x + 1$ around 2.

Problem 10: Find the radius of convergence and the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(x+2)^n}{n!}$