Summer Term I Kostadinov MA124 Calculus II Boston University

Quiz No.2

student:

Let $g(x) = \int_0^x f(t) dt$, where f is the function whose graph is shown.

Problem 1: Evaluate the function values

$$g(0) = g(1) = g(3) =$$

Problem 2: Evaluate the function values

$$f(0) = g'(1) = g'(2) =$$

Problem 3: Where g(x) has a maximal value in the interval [0,9]? (Circle the right answer) x = 0 x = 2 x = 3 x = 4 x = 5 x = 6 x = 8 x = 9

Problem 4: On what interval *g* decreases?

Summer Term I Kostadinov MA124 Calculus II Boston University

Problem 5: Use Fundamental theorem of Calculus to find the derivative of the function:

a) $F(x) = \int_0^x \ln(t) dt$ b) $F(x) = \int_x^2 t^2 dt$ c) $F(y) = \int_e^y x^2 \sin(x) dx$

Problem 6: Evaluate the integral $\int_1^2 x^{-2} dx$

Problem 7: Evaluate the integral $\int_0^1 x^{3/7} dx$

Problem 8: State the Fundamental Theorem of Calculus:

Problem 9: Compute y' if $y = (x^2 + e^x) \ln x$.

Problem 10: Write a particular antiderivative for each of the following functions

a)
$$y = e^x$$
 c) $y = x^5$

b)
$$y = x^{-1}$$
 d) $y = \sin(x)$