Quiz No.7

student:

Problem 1: Evaluate the definite integral

$$\int_0^{\pi/4} \cos(2x) \, dx$$

Problem 2: Evaluate the indefinite integral using integration by parts:

$$\int x \sin(x) \, dx$$

Problem 3: Evaluate the indefinite integral $(n \neq -1)$

$$\int y^n \, dy$$

Problem 4: Evaluate the definite integral

$$\int_1^2 x^3 + \frac{1}{x} \, dx$$

Problem 5: In the following sentences cross out the WRONG word:

The integral $\int_{0}^{\infty} x \, dx$ is proper. improper.

The integral $\int_{0}^{4} (x-3)^2 dx$ is proper. improper. The integral $\int_{0}^{\infty} \frac{1}{x} dx$ is improper and convergent. divergent. The integral $\int_{0}^{\infty} \frac{1}{x^2} dx$ is improper and convergent. divergent.

Problem 6: Write out the partial fractions expansion of the function

$$\frac{10}{2x^2 + 3x - 2}$$

Problem 7: Write out the partial fractions expansion of the function

$$\frac{10}{(x^2+9)(x-1)}$$

Problem 8: Evaluate the indefinite integral:

$$\int \frac{10}{(x^2+9)(x-1)} \, dx$$

 $\begin{tabular}{ll} \textbf{Problem 9:} & Evaluate the indefinite integral: \\ \end{tabular}$

$$\int \frac{10}{2x^2 + 3x - 2} \, dx$$

Problem 10: Use Simpson's rule to approximate the given integral:

$$\int_{1}^{3} 2^{x} dx$$