
Boston University  MA341 Number Theory 
Summer I 2008 Allan Maymin 

1 of 9 

The application of prime numbers  
to RSA encryption 

 
Prime number definition: Let us begin with the definition of a  
prime number p.  The number p, which is a member of the set of 
natural numbers N, is considered to be prime if and only if the number 
p has exactly two divisors: 1 and p. It is important to note that the 
number one (1) is not considered a prime because it only has one 
divisor.  
 
Numbers that are not prime are defined as composite. From this 
definition, we can see that a prime number can never be even, since it 
would have the divisor of 2. Of course, the only exception to that rule 
is the prime number 2, which has no other divisors but itself. 
Therefore, we can extend the definition to say that every prime number 
greater than 2  must be odd. From the above definition, we can also see 
that a prime number can never end in 0 or 5, since such numbers 
would have divisors of 5. 
 
Primality testing: Given an integer N, we want to find the factors of 
N. If no such factors of N exist, then we can state that N is a prime 
number. The most complete solution to this problem is to perform an 
exhaustive search over all possible factors. This is called the full trial 
division algorithm and it is defined below:  

 
Given a composite integer n , trial division consists of trial-
dividing n by every prime number less than or equal to . If a 
number is found which divides evenly into n, that number is a 
factor of n. (Wikipedia) 

 



Boston University  MA341 Number Theory 
Summer I 2008 Allan Maymin 

2 of 9 

Let us take two large prime integers p and q. If we take the composite 
integer pq, we now have a very large composite, called a semi-prime, 
with only two large prime divisors: p and q. This creates an integer 
factorization problem of trying to find large prime divisors of an even 
larger composite number. This problem is at the heart of cryptography 
and we will explore it in more detail. 
 
RSA Algorithm: This assumption forms the base of the Rivest-
Shamir-Adleman algorithm, also known as the RSA algorithm. This 
algorithm is used to encrypt messages that are sent between two 
parties. Let us call one party a sender, and the other a receiver.  
 
First, the receiver runs the RSA Algorithm to generate a public key 
and a private key.  The public key is used by the sender to encrypt the 
message, and the private key is used by the receiver to decrypt the 
message. The algorithm below will create a private key consisting of 
two integers: 
 

1. Choose two distinct large random prime 
numbers p and q 

2. Compute  
o is used as the modulus for both the 

public and private keys 
3. Compute the totient: 

. 
4. Choose an integer e such that 

, and e and  are 
coprime 

o e is released as the public key 
exponent 

5. Compute d to satisfy the congruence relation 
;  i.e. 



Boston University  MA341 Number Theory 
Summer I 2008 Allan Maymin 

3 of 9 

 for some integer k.  
o d is kept as the private key exponent 

(Wikipedia) 
 
 
Now, we show the application of this algorithm: 
 

Encryption 

Alice transmits her public key  to Bob and keeps 
the private key secret. Bob then wishes to send message 
M to Alice. 

He first turns M into a number <  by using an 
agreed-upon reversible protocol known as a padding 
scheme. He then computes the ciphertext 
corresponding to: 

 

Bob then transmits  to Alice. 

Decryption 

Alice can recover  from  by using her private key 
exponent  by the following computation: 

 

Given , she can recover the original message M. 
(Wikipedia) 
 



Boston University  MA341 Number Theory 
Summer I 2008 Allan Maymin 

4 of 9 

As you can see, if you could factor n into p and q, you can easily find 
d by solving the congruence:  
 

 
 

Example: Let’s pick P = 7, Q = 19. This means N = P * Q = 133. Let 
m= (P-1) * (Q-1) = 6 * 18 = 108. Now, we need to find an integer e, 
that is coprime to m.  
 
e = 2 => gcd(e, 108) = 2 (no) 
e = 3 => gcd(e, 108) = 3 (no) 
e = 4 => gcd(e, 108) = 4 (no) 
e = 5 => gcd(e, 108) = 1 (yes!) 
 
Now, we find d, such that d * e  = 1 (mod m). 
 
This means a number s exists for which de – 1 = m * s. From this 
formula, we can get d = (m * s + 1) / e. 
 
s = 0, d = (108 * 0 + 1 ) / 5 = 1/5 (no) 
s = 1, d = (108 * 1 + 1 ) / 5 = 109/5 (no) 
s = 2, d = (108 * 2 + 1 ) / 5 = 217/5 (no) 
s = 2, d = (108 * 3 + 1 ) / 5 = 325/5 = 65 (yes!) 
 
The public key is defined as {n,e} = {133, 5}. The private key is 
defined as {n, d} = {133, 65}. 
 
 
 
Encryption Example: Suppose Alice has a public key of {133,5} and 
a private key of {133,65}. She transmits the public key to Bob.  



Boston University  MA341 Number Theory 
Summer I 2008 Allan Maymin 

5 of 9 

 
Bob wishes to send the message M = 6, which is some arbitrary code.  
Bob must encode his message into ciphertext c, from the following 
formula:  
    
 
In this case, c = 6^5 (mod 133). We calculate this to c = 62. 
 
Alice receives the cipher-text c = 62. She uses the following formula 
to decipher the text:  
    

M = Cd % n 
  = 6265 % 133 
  = 62 * 6264 % 133 
  = 62 * (622)32 % 133 
  = 62 * 384432 % 133 
  = 62 * (3844 % 133)32 % 133 
  = 62 * 12032 % 133 

We now repeat the sequence of operations that reduced 6265 to 12032 to 
reduce the exponent down to 1. 

  = 62 * 3616 % 133 
  = 62 * 998 % 133 
  = 62 * 924 % 133 
  = 62 * 852 % 133 
  = 62 * 43 % 133 
  = 2666 % 133 
  = 6  

As we can see, 6 is the correct message. 



Boston University  MA341 Number Theory 
Summer I 2008 Allan Maymin 

6 of 9 

However,  the semi-prime n = 133 can be quickly deduced to 
133=7*19, making P=7,Q=19 obvious to any attacker. One can even 
use the trial division methodology for obtaining the prime numbers for 
such small n. 
 
Now, if p and q are known, then we can quickly deduce d from the 
following formula: 

   
This means there exists an integer s for which ed -1 = (p-1)*(q-1) * s. 
 
D = [(p-1)*(q-1)*s + 1] / e 
   = [(7-1) * (19-1) * s + 1]  / e 
   = [6 * 18 * s + 1 ] /5 
 
s = 2, d = (108 * 3 + 1 ) / 5 = 325/5 = 65 (yes!) 
 
And, as a result, d is found to be 65 by any malicious attacker. 
 
As we just showed, it is extremely important that we choose large 
enough p and q to make a factorization attack very expensive. The 
goal is to make the factorization of n too computationally intensive 
and thus render that attack impractical. A good rule of thumb is to use 
p, q such that n is represented as a 1024 bit binary number.  
 
Impracticality of large semi-prime factorization: Let us first define 
the function O(n) as a description of how the size of input data affects 
a particular algorithm’s usage of computing power. As an example, 
consider the Trial division algorithm. In the worst-case scenario, the 
algorithm will perform divisor tests on all prime integers up to sqrt(n). 
Thus one could say that this will run in O(sqrt(n)) time. 
 



Boston University  MA341 Number Theory 
Summer I 2008 Allan Maymin 

7 of 9 

The current best operating time is still not within the domain of 
polynomial time. For reference, in 2005, a team of scientists in 
Germany factored a 200 decimal digit number into two primes. That 
factorization took several months of computer time on 80 top of the 
line computers. It is estimated to be equivalent to more than 55 years 
of computational power.¹ 
 
Relation between Φ(n) and n: If we are given Φ(n) and n, we can 
immediately deduce p and q.  We know that  
 

, and  
 
As a result, we can easily solve this system of equations for p,q. 
Therefore, it is imperative to destroy  all intermediary calculations 
during the development of the private key. This includes p and q. 
 
Conclusion: In this paper we have shown the definition of a prime 
number. We then tested the primality of a sample integer by using the 
trial division method. Next, we explained the RSA algorithm and 
showed the application of encryption/decryption. Finally, we explored 
the impracticality of a n-factorization attack on the algorithm and 
stressed the importance of destroying everything but the public key 
and private key. 
 

 
 
 
 
 
 
 



Boston University  MA341 Number Theory 
Summer I 2008 Allan Maymin 

8 of 9 

References:  
 
1) F. Bahr, M. Boehm, J. Franke, T. Kleinjung. “rsa200”. May 9 

2005. http://www.crypto-world.com/announcements/rsa200.txt 
2) Wikipedia.  

http://en.wikipedia.org/wiki/Prime_number 
http://en.wikipedia.org/wiki/RSA 
http://en.wikipedia.org/wiki/Integer_factorization 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Boston University  MA341 Number Theory 
Summer I 2008 Allan Maymin 

9 of 9 

Proof of RSA:  

The decryption procedure works because first 

. 

Now, , and hence 
and 

 

which can also be written as 
 and  

for proper values of and . If is not a multiple of then and are 
coprime because is prime; so by Fermat's little theorem 

 

and therefore, using the first expression for , 

. 
If instead is a multiple of , then 

. 

Using the second expression for , we similarly conclude that 

. 

Since and are distinct prime numbers, they are relatively prime to each 
other, so the fact that both primes divide med − m implies their product 
divides med − m, which means 

. 

Thus, .    (Wikipedia) 
 


