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Final Project Draft: Diophantine Approximations

In this project, we will be exploring Diophantine Approximations while

understanding transcendental numbers, simultaneous approximations, and several

important theorems concerning the subject.  We will try to see how accurate one can be

while approximating real numbers by rational numbers.  The most important subjects we

will be focusing include Dirichlet’s Principle and the Liouville number.

We will first go into the approximations of irrational numbers by rational number

with the help of Dirichlet’s box principle, which is also known as the Pigeon-hole

Principle.  We start by thinking, given a real number , how closely can it be

approximated by rational numbers?  To make the question more precise, for any given

positive , is there a rational number a/b within of , so that the inequality

                        (1) εα <−
b
a

is satisfied?  The answer is yes because the rational numbers are dense on the real line.

In other words, for every real number r, we can find numbers s ∈  S, where S is the subset

of real numbers, that are as close as to r.  In fact, this established that for any real number

 and any positive , there are infinitely many rational numbers a/b satisfying the above

inequality.

 Another way of approaching this problem is to consider all rational numbers with

a fixed denominator b, where b is a positive integer.  The real number  can be located

between two such rational numbers, say

b
c

b
c 1+

<≤ α  ,

and so we have | bbc /1|/ <−α   In fact, we can write

   (2)
bb

a
2
1

≤−α

By choosing a = c or a = c+1.  The inequality would be strict, that is to say, equality

would be excluded if  was not only real but irrational.
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For the following Theorem, we will rely on Dirichlet’s Box Principle, or the

Pigeonhole Principle, which states that if n+1 objects are distributed into n boxes, then at

least one box contains at least two objects.  In other words, given two natural numbers n

and m with n > m, if n items are put into m pigeonholes, then at least one pigeonhole must

contain more than one item.

Theorem 1: (Dirichlet’s Approximation Theorem) :

If  is irrational, then there exist infinitely many rational numbers p/q such that

 (3)
q
p

−α < 2

1
q

The qualitative question whether a given real number  is irrational or not, depends on a

quantitative property of , namely on the quality of rational approximations to .

Multiplying this inequality (3) with q shows that there are infinitely many best

approximations to a given irrational .  To prove Theorem 1, we will rely on the

pigeonhole principle.

Proof 1:

We denote the integral part and the fractional part of a real number x by

[x] = max {z € Z : z  x } and {x} = x =[x], respectively.

Let  Q be a positive integer.  The numbers

  0, { }, {2 }, …, {Q }

define Q+1 points distributed among the Q disjoint intervals








 −
Q
j

Q
j ,1       for j=1, …, Q.

By the pigeonhole principle there has to be at least one interval which contains at least

two numbers { }  {l }, say, with 0  k, l  Q and  k  l.  It follows that

(1.1) {k } – {l } = k  – [k ] – l  + [l ]

         = {(k-l) } + [(k-l) ] + [l ] – [k ]

€ Z
Since {k } – {l } lies in the interval [0, 1/Q), the integral parts of the above equation add

up to zero.  Setting q = k – l we obtain, {q } = {k } – {l } < 1 / Q.

With p:= [q ] it follows that
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(1.2)
qQq

q
q

pq
q
p 1}{||

<=
−

=−
αα

α ,

which implies the estimate (2), since q < Q .

Now, to contradict (1.2), we suppose that  is irrational and that there exist only

finitely many solutions p1/ q1, …, pn / qn to statement (3).  Since  does not belong to Q,

we can find a Q such that:

Qq
p

j

j 1
>−α  for j=1,…,n   contradicting (1.2).

Finally we assume that  is rational, say  = a/b with a € Z ad b € N.

If  =
b
a

q
p , then

,1||
bqbq

bpaq
q
p

≥
−

=−α

and (1.2) involves q < b.  This proves that there are finitely many p/q with (1.2),

concluding our proof 1.

In the second part of our paper, we will discuss Liouville’s Theorem followed by

Liouville’s Number.

Theorem 2:

For any algebraic number  of degree d>1 there exists a positive constant c, depending

only on , such that:

(5) dq
c

q
p

>−α

for all rationals
q
p  with q > 0.

Proof 2:

Let P(X) denote the minimal polynomial of .  Then, by the meanvalue theorem,

{ )()(
0

εαα P
q
p

q
pPP

q
pP ′
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−

=

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm


4

for some  lying in between
q
p  and .  Without loss of generality we may assume that the

distance between  and
q
p is small:

.1<−
q
p

α

Then | | < 1 | | and hence |P’( )| < 1/c for some positive c.  While denoting this, we

should not forget to indicate that polynomials are bounded on compact sets.   In other

words, the sequences in a set of real numbers have subsequences that converge to an

element again contained in the set of real numbers.   This is why the compact sets are

always bounded, hence also the polynomials.

It follows that,

.







>−

q
pPc

q
p

α

Since P(X) is irreducible of degree d  2,
q
p  cannot be zero of P(X).  Hence,

1≥







q
pPq d

Noting that P(x) has integer coefficients, we complete our proof.

A real number  is said to be a Liouville number if for every positive integer m,

there exist integers am and bm > 1 such that,

(4) .10 m
mm

m

bb
a

<−< α

Since the right-hand side tends to zero as m , the rationals am /  bm approximate 

better and better.  In particular, it follows that the set of the numbers bm is unbounded.
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Theorem 3:

Every Liouville number is transcendental.

Proof 3:

We assume that the Liouville number  is algebraic of degree d.  Combining (4) with the

estimate in Liouville’s theorem (5) implies

,1
m
m

d
m bb
c

<

where c is a positive constant depending only on .  Thus it follows that md
mbc −<

and since the set of the bm is unbounded, this gives the desired contradiction.

 We can define Liouville’s number or Liouville’s constant (L) as:

where the kth instance of the digit 1 is separated from the previous by k!  – (k – 1)! – 1

instances of the digit 0. Liouville's constant nearly satisfies the equation:

10 x6 – 75 x3 – 190 x + 21 = 0, which has solution x= 0.1100009999... , but plugging

x = L into this equation gives -0.0000000059… instead of 0.

Here is a semilog plot, where the numbers of digits  in the th term is plotted

showing a nested structure.

Interestingly, the th incrementally

largest term (considering only those

entirely of 9s in order to exclude the

term ) occurs precisely at

position , and this term consists

of 9s.
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