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Introduction
We are all familiar with square numbers, and probably with triangular numbers as well: 
these are numbers such that, given a square or triangular number n and n dots, we can 
make form a lattice structure of a square or an equilateral triangle, respectively. We might 
reasonably expect polygonal numbers in general to be defined like this; however, for m-
gonal numbers with m>4, we cannot make a lattice structure of an m-gon given m dots. 
Instead, polygonal numbers and the shapes they form look like:

Figure 1:

m=3                                    m=4                        m=5                         m=6. 

Much as we expect, the figures formed are all regular polygons, but those with m>4 look 
very different that the square or triangular numbers.

Polygonal  numbers  were first  studied by the ancient  Greeks  (the Pythagoreans),  who 
made  several  important  observations  that  were  later  proved  by  more  modern 
mathematicians. For instance, they observed that the common difference in the sequence 
of differences of adjacent n-gonal numbers was n-2, i.e. that in the sequence of triangular 
numbers – 1, 3, 6, 10, 15, 21, etc – the differences between adjacent numbers are 1, 2, 3, 
4, 5, 6, etc, and the common difference in that sequence is 3-2 = 1. This will become 
more obvious when we discuss the general form of an n-gonal number. The Greeks also 
began to notice something that would lead to a conjecture by Fermat and then a proof by 
Gauss: that every natural number can be written as a sum of n n-gonal numbers. We will 
return to this in the last section. 

General Information: Geometric Approaches
Let us now construct the polygonal numbers: given the nth m-gonal number, how must we 
modify it to make the n+1st m-gonal number. We can use one of our old vertices as a 
vertex for the new polygon, leaving us with m-1 vertices to add. We then need to fill in 
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the sides in between these vertices; since we have two sides, we do this m-2 times, adding 
n-2 dots each time.

Figure 2:

Thus,  for  each  iteration,  we  add  (m-1)+(n-2)(m-2)  dots.  Since  m  and  m-2  are  both 
constant,  the  only  term  that  changes  is  (n-2).  This  leads  to  the  common  difference 
observation: each iteration, we add m-2 more dots than we added the previous iteration 
because the coefficient of the (m-2) term has increased by 1.

We can now look try to find a formula for the polygonal numbers: we will derive it for 
triangles and then state the general case. It is tempting to try something along the lines of 
square numbers, i.e. the n-th square = n*n, but does not bear much relation to the general 
case,  owing to  the specific  geometry of  square  numbers,  i.e.  the fact  that  they form 
rectangular arrays. Let us now graphically develop the formula for triangle numbers:

1. Letting m be odd, start with the mth triangular number, in our case, we let m=7. 
2. Separate the triangle into two parts by “cutting” underneath the 2nd row (in 

general, the (n-1)/2nd row).
3. Rotate the top part 180 degrees and fit into bottom part.
4. You are left with a rectangle of length n and height ½(n+1). Thus the formula for 

the mth triangle number, with odd m, is ½(n)(n+1).

Figure 3:
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Our strategy can easily be extended to cases where m is even by cutting the triangle along 
the n/2nd row and yielding a rectangle of height n/2 and width n+1, which evidently yields 
the same formula. 

A similar geometric strategy can be used to show that all square numbers are the sum of 
two adjacent triangular numbers, i.e. 4 = 1 + 3, 9 = 3 + 6, 16 = 6 + 10, and so on:

1. Start with the nth square number.
2. Cleave it into two triangles just on either side of the main diagonal.
3. The two triangles you are left with are not equilateral; however, since each 

side of one triangle has n dots and each side of the has n-1 dots, they can be 
rearranged to form equilateral triangular lattices.

Figure 4:
                                 

Geometry can also be used to find some (but not all) Pythagorean triples. Consider figure 
5, which shows that if we subtract the nth square number from the n+1st square number, 
we are left with 2n + 1. This leads means that 2n + 1 = (n + 1)  2 – n2, n2 + 2n + 1 = (n+1)2. 
Thus,  if  2n  +  1  is  a  perfect  square,  we  have  produced  an  integral  solution  to  the 
Diophantine equation a2 + b2 = c2.

Unfortunately,  our  geometric  methods  are  rather  complicated  for  giving  a  general 
expression for polygonal numbers, so to save space we will state the expression for the nth 

m-gonal number (but thinking about it is a good exercise). This expression proves will 
prove useful later on, when we discuss which triangular numbers are also pentagonal. 

p = ½ m[(n-2)m – (n-4)]

Sums of Polygonal Numbers
In the 17th century, the French lawyer (and avid amateur mathematician) Pierre de Fermat 
conjectured that any number could be written as a sum of n n-gonal numbers. This was 
eventually proved by Cauchy in 1813; however, here we will only deal with the square 
case, i.e. that any number is the sum of four square numbers – also known as Lagrange’s 
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four-square theorem. We prove this by descent, much as we proved that any prime of the 
form 4k + 1 is a sum of two squares in lecture. We first need three lemmas:

Lemma 1: The Euler four-square identity: 
Given integers a,b,c,d,q,r,s,t, then

(a2 + b2 + c2 + d2)(q2 + r2 + s2 + t2) = (aq + br + cs + dt)2

        + (ar – bq – ct + ds) 2

        + (as + bt – cq – dr) 2

        + (at – bs + cr – dq) 2  

Lemma 2: We proved this one in class:
If 2m = x2 + y2, then there exist natural numbers u,v, such that m = u2 + v2

Proof: Since 2m is even, x and y must be of the same parity, (x+y)/2 and 
(x-y)/2 are both integers, and the identity
M = ((x-y)/2)2 + ((x+y)/2)2

Lemma 3: More sums of squares:
For any odd prime p, a2 + b2 + 1 = kp for some natural number k, 0 < k < p

Proof: Let p = 2n +1, and take 2 sets, A = {a2 | a = 0, 1,…, n}
B = {-b2 –1 | b = 0, 1,…, n}, with the properties:
1. No two elements of A are congruent mod p. Proof: let two different 

elements, a2 and b2 in A, be congruent. This means that p|(a2 – b2), so 
p|(a  –  b),  which  is  obviously  impossible  unless  a  =  b,  which 
contradicts our assumption. By similar reasoning, no two elements of 
B are congruent to each other mod p.   

2. The intersect  of A and B = null  set,  because all  elements of B are 
negative while all elements of A are non-negative.

3. Thus set C = A U B has 2n + 2 = p + 1 elements.
4. Thus, by the pigeonhole principle, two elements of C, a and b, must be 

congruent two each other mod p. Since none of the elements in either 
set are congruent, mod p, to any other elements of their respective set, 
if a is in A, then b must be in B.

This yields a2 + b2 = kp for some natural number k. Further, 
p2 = (2n+1) 2 > 2n2 + 1 >= a2 + b2 + 1 = kp, so p>k

So kp = sum of four squares, a2 + b2 + 12 + 02
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Proof of Lagrange’s four-square theorem:
Lemma 1 reduces our problem to showing only that any arbitrary prime is a sum 
of four squares, since 2 is obvious, let prime p be odd, i.e. p = 2n + 1.
By lemma 3, a2 + b2 + c2 + d2 = kp for natural numbers a,b,c,d,m, and 0 < m < p
Now we use the descent strategy: if m = 1, we’re happy, if m > 1, we show that 
there exists n, 1 >= n < m, such that np is a sum of four squares. 

Case 1: m is even:
This is easy. M is even means that that either all four of a,b,c,d are of the 
same parity, or, without loss of generality, a and b are of the same parity 
and c and d are of the other parity, i.e. a and b are even while c and d are 
odd. We can group a with b and c with d, and then by lemma 2 n = m/2.

Case 2: m is odd (and not = 1):
Let w, x, y, z be congruent to a, b, c, d mod k, respectively, and -k/2  >= 
w, x, y, z >= k/2, thus:
w2 + x2 + y2 +z2 < k2 (= 4 * k2/4) and
w2 + x2 + y2 +z2 congruent to 0 mod k, i.e. w2 + x2 + y2 +z2 = nm for some 
natural number n, with 0 < n < k
Now consider k2np.= (aw + bx + cy + dz)2

                   + (ax – bw – cz + dy)2

         + (ay + bz – cw – dx)2                
                                                       + (az – by + cx – dw)2  

The last three are obviously multiples of k2 (for instance, take the square 
root of the second and then group (ax – bw) and (-cz + dy); since a is 
congruent to w and b is congruent to x, the first part is congruent to 0 mod 
k, so it is a multiple of k. Similar reasoning works for analogous groupings 
in the last three squares as well. The first is also a multiple of m because:

aw + bx + cy + dz is congruent to w2 + x2 + y2 + z2 is congruent to 0 (k), 
thus:
k | aw + bx + cy + dz

So both sides are divisible by k2, thus we can divide through by k2 to get a 
new expression for np, with 0 < n < k. 
Done!

Triangular Pentagons: Diophantine Equations
Using our knowledge of Diophantine equations and sums of squares, we can now try to 
figure when an n-gonal number is also an m-gonal number. We take m = 3 and n = 5, so 
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we want to know when triangular numbers are also pentagonal numbers. We refer back to 
the general formula, which states that triangular numbers are ½m(m+1) and pentagonal 
ones are ½n(3n+1). Setting them equal yields:

m(m + 1) = n(3n - 1)
3(4m2 + 4m) = 36n2 - 12n
3(2m + 1)2 – 2 = (6n – 1)2

 (6n – 1)2 – 3(2m + 1)2 = -2

Now let x = 6n – 1 and y = 2m +1. We get:
x2 – 3y2 = -2

Which we can let a computer program solve and give the solutions (x,y) = (5,3), (19,11), 
(71,41), (265,153), (13775,7953), and so on; however, we aren’t quite done since we’re 
looking integer values of m and n, which end up being (n,m) = (1,1), (12,20), (165,285), 
(2296, 3976).  This  means  that  the first  pentagonal  number  is  also the first  triangular 
number, the 12th pentagonal number is the 20th triangular number, etc.

We now see one reason why sums of squares are so important in number theory. Were 
we  to  try  to  find  triangular  square  numbers,  we  would  end  up  having  to  solve  the 
equation (4n)2 – 2(4m+1)2 = -2, or x2 – 2y2 = -2. It looks like there may be a pattern in our 
Diophantine equations, so a good exercise could be: what is the general expression for a 
k-gonal number that is also a triangular number?
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