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A proof verifies a conjecture by using axioms and previously proved theorems to 

a logical argument. Proving conjectures has been done for thousands of years and can 

take on a wide range of forms. Some techniques have been popularized for their 

versatility, for example, proof by induction, proof by contradiction, proof without words, 

and the two-column proof. Since the 1950's a new method has become available to us, 

proof by computer. Validating a proof’s logic on a computer is called formalization. The 

program that performs this function is called a proof assistant. The term proof assistant 

encompasses both proof checkers and automated theorem provers.  A proof checker is the 

earliest form of a proof assistant which requires the user to provide both the proposition 

and the proof and it simply verifies the logic.  An automated theorem prover is the main 

focus of this paper. Automated theorem provers take user provided propositions and 

tactics into their 'proof engines' to interactively generate a proof. These systems partially 

construct formal proofs by filling in intermediate steps of a proof.  The computer is less 

susceptible to logical error and thereby may uncover innovative outcomes which the 

human may have initially dismissed as implausible. Having no intuition or expected 

results, the computer is extremely thorough trying every possibility and provides logical 

proofs of theorems.  

An example of this process is demonstrated through the most comprehensively 

verified proof in digital history, Gonthier’s formalization of the Four-Color Theorem. 

The Four-Color Theorem is both controversial and exciting because it could not be 

proved by hand. This theorem asserts that any map divided into any number or 

arrangement of contiguous regions can be colored with only four colors with no two 

regions of same color adjacent. Using a computer as their method, computer scientists 

Appel and Haken were the first to ever prove this theorem in 1976. In fact, this was the 

first significant theorem proved using advanced computer assistance. The Four-Color 

Theorem is unique in that it was one of the first computer-based proofs; not only did the 

computer assist in confirming the logic, the computer was necessary. 

There exist two major proof styles which have been utilized in a range of proof 

assistants, the procedural proof style and the declarative proof style.  With the procedural 

proof style, the mathematician initiates a dialogue with the computer and engages in an 

"interactive game" in which the computer presents the user with proof obligations, or 
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goals, and then the user executes tactics, breaking the goals into smaller, more 

manageable sub-goals. The alternative approach, declarative proof style, uses very small 

steps to develop a formal proof all at once, here, the user tells the computer what is to be 

proved and where to go using sub-goals.

The foundation of proof assistant programming language is type theory. These 

typed languages include lambda calculus and calculus of constructions. Just as there exist 

symbolic mathematical terms to represent the English language in a concise form, there 

exist well-chosen type-script to express formulas and prepositions on the computer. For 

example, within calculus of construction exist terms such as propositions, predicates, and 

judgments, which serve as inference rules and definitions of logical operators and data 

types. This typed language enables mathematicians to clearly differentiate between points 

and lines, numbers and set of numbers, etc.

The axioms and rules of inference, used by any proof assistant are stored in a 

kernel of the system. This small kernel verifies every line of code generated by the 

computer. With such a significant role in verifying sound, logical proofs, the kernel is 

checked in many different ways to eliminate any potential for bugs.  

For this project, we explored the Higher Order Logic (HOL) Light proof assistant 

and the Coq proof assistant, which both create procedural style proofs. HOL Light uses a 

lambda-calculus type theory which utilizes lambdas (λ) to symbolize abstracted 

functions. This type theory uses equality as the basis for every rule. 

HOL Light consists of three mathematical axioms as its foundation:  the axiom of 

extensionality, the axiom of infinity, and the axiom of choice. The fact that every 

function is determined by its input-output nature is the extensionality axiom. The infinity 

axiom reports the existence of a function that is one-to-one but not onto. Lastly, the 

axiom of choice finds an element to satisfy a predicate, P(x).

Downloading the HOL Light system provides us with examples of proofs 

including the formalized version of the Law of Quadratic Reciprocity, first introduced by 

Euler and then later proved by Gauss. As we studied in class, the Law of Quadratic 

Reciprocity tells us whether a quadratic equation with a prime modulus has a solution. By 

studying this formalized proof and analyzing portions of the program we gain an 

understanding of the general language and format which is prevalent throughout all 
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formal proofs generated in HOL Light. For example, let's focus on the third lemma of the 

computer generated proof: 

 let CONG_MINUS1_SQUARE = prove
 (`2 <= p ==> ((p - 1) * (p - 1) == 1) (mod p)`,
  SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM] THEN REPEAT STRIP_TAC 
THEN
  REWRITE_TAC[cong; nat_mod; ARITH_RULE `(2 + x) - 1 = x + 1`] THEN
  MAP_EVERY EXISTS_TAC [`0`; `d:num`] THEN ARITH_TAC);; 

The structure of a proof in HOL Light consists of lemmas. Each lemma is designed with 

three parts: a label, a statement, and a proof. The label identifies the lemma so the result 

can be referenced later in the proof. The first line names the result by assigning a label, in 

this case CONG_MINUS!_SQUARE. The second line is the statement, and the last three 

lines are the encoded proof. You can see that this lemma references four earlier lemmas 

using their labels (LE_EXISITS, LEFT_IMP_EXISTS_THM, cong, nat_mod).  

While HOL Light is one of the most highly respected proof assistants, it 

sometimes cannot express abstract concepts and certain outputs may be indecipherable to 

humans.  Whereas HOL Light uses lambda-calculus type theory for function definition, 

function application, and recursion, the proof assistant Coq uses calculus of inductive 

constructions. This type theory is based on inductively defined relations. In constructive 

logic, if there is a proof, there is a function 'hidden' in the proof. The type-script is 

considered the formula for the function, and the generated proof is the program. As 

mentioned above, the Four-Color Theorem was proved in 1979 by computer; however, it 

wasn't until 2005 that it was proved by using a single computer program, Coq. Before 

Gonthier and Werner proved the Four-Color Theorem using Coq, many different 

computer programs were required to prove each segment of the proof separately.  

We used the online software ProofWeb to demonstrate an example of the proof 

assistant Coq.  We must note that ProofWeb is not as efficient as the Coq proof assistant 

and deviates from some normal syntax and commands which define the language of Coq. 

Coq builds natural deduction proofs either in a 'tree' or 'box' style. By executing tactics, 

or commands, the proof will start to "grow." The tactics in ProofWeb are usually denoted 

by a three letter abbreviation followed by an underscore and the letter 'i' or 'e' signifying 
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introduction or elimination. The tactics are generally arguments labeled as formulas or 

terms. The formalized proof for the statement A /\ B → A appears as follows in 

ProofWeb:  

Require Import ProofWeb.

Variables A B : Prop.

Theorem prop_001 : (A /\ B) -> A.
imp_i H.
con_e1 (B).
exact H.

Qed.

Let's break down this program line-by-line as we did for a section of a  HOL 

Light proof. "Require Import ProofWeb" simply imports the definitions needed to run 

Coq.  Next, "Variables A B : Prop." declares propositional variables A and B. As with 

most other computer languages, a variable must be defined before it can be used. 

"Theorem prop_001 : (A /\ B) -> A" tells the computer what we are going to prove in this 

case A /\ B → A and labels it "prop_011." The three lines: "imp_i H," "con_e1 (B)," and 

"exact H" are the tactics, or commands, which make up the body of the proof. Once this 

program has run in ProofWeb the prop_001 is successfully defined.

As mathematicians continue to define theorems via computer, the formalized 

proofs enter into an electronic library. Once the library is complete with all known 

theorems, mathematicians speculate that the computer will be able to take the next step 

and conceive its own theorems and proofs, like an “automated mathematician." We are 

now faced with the question:  Does designing a proof require thought? If so, does this 

mean computers will be able think? We are temped to argue no, because computers are 

not conceptualizing what they are doing, they are simply trying every possibility. 

Computers rely on the small kernel of axioms and inference rules to verify every step of 

the proof. In the body of this paper we have demonstrated the process, language, and 

format of two popular proof assistants, HOL Light and Coq, constantly acknowledging 

the user's responsibility in feeding the computer information. If the human were to 

mistype, or accidentally skip an essential key, the computer would respond with error or 
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undefined. The computer relies on the input generated by the human and requires that the 

human logically and correctly feed information to the program. To have a thought 

requires consideration and evaluation - neither of which the computer does.               

Rather than conceptualizing, computers are performing tasks as described to them 

by their users. As with any other proof, it is important to not simply rely on the logic of 

the creator because, by their nature, computer programs contain bugs. As pure 

mathematicians, many number theorists agree that before using a theorem one must prove 

it themselves. The justification for this rigorous process roots in the holes and flaws in so 

many of our published mathematics papers. By leaving the validation of proofs up to 

computers we are losing accuracy due to intrinsic bugs in computers and the mistakes of 

computer programmers. Additionally, we may be dropping a generation of mathematical 

understanding. 

Many critics of proof assistants argue "that proofs of computer system correctness 

are often likely to be so long and tedious that humans cannot reasonably check them and 

discuss them" (Harrison 1402). If theorems are not constantly being proved around the 

world, the understanding, creativity, and insight it takes to draw a rigorous proof will be 

lost. Proving a theorem inspires new ideas and new intuitions that a computer is not 

capable of. Does this mean our future mathematicians will no longer see the beauty of 

proofs first-hand? Will we lose our inspiration to constantly be proving and creating 

mathematics? 

Lastly, should we be concerned proof diversity? Theorems have been proved 

again and again by different mathematicians and using a range of methods. For instance, 

the Pythagorean Theorem has been proved in over 80 different ways using not only 

algebra and geometry but proofs without words and induction. If computers serve as our 

primary source of generating proofs, will mathematicians settle for only one proof-style 

per theorem? Taking all of these questions into consideration, we must be cautious that 

we preserve the integrity of mathematics. Technology has provided us with unlimited 

boundaries for the future of mathematics; however, we must keep in mind Pete Parker’s 

words in Spiderman (2002):  “with great power comes great responsibility.”
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