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Diophantine Equations: Number Theory Meets
Algebra and Geometry

Diophantine Equations. . . . his boyhood lasted 1/6th of his life; he married
after 1/7th more; his beard grew after 1/12th more, and his son was born 5
years later; the son lived to half his father’s age, and the father died 4 years
after the son. This is a riddle describing the life of Diophantus. He lived in the
hellenistic city of Alexandria, in nowadays Egypt, and is considered to be one of
the the most influential mathematicians of all time. His treatise, ”Arithmetic”,
contained a lot of riddles like the above one, and ways of solving them. The
relations between the unknown quantities are put concisely into equations, and
discussing such equations will be topic of this lecture. Let us now formally
define the type of equations we will be interested in.

Definition. A Diophantine equation is a polynomial equation P (x1, .., xn) = 0,
where the polynomial P has integral coefficients and one is interested in solutions
for which all the unknowns take integer values.1

For example x2 + y2 = z2 is a Diophantine equation, and x = 3, y = 4, z = 5 is
one of its infinitely many solutions. Another example is x + y = 1, and all its
solutions are given by x = t, y = 1−t, where t runs through all integers. A third
example is x2 + 4y = 3. This Diophantine equation has no solutions, although
note that x = 0, y = 3

4 is a solution with rational values for the unknowns.

The ultimate question. So could we always solve a Diophantine equation? This
question is too general and worse, too vague. What do we mean by ’solve’? For
example, we could easily write a computer program which takes as an input
an arbitrary Diophantine equation, and then prints all its solutions, if we only
allow it to run infinitely long time. Just let it check, one by one, all the possible
combinations of values for the variables. Another meaning we may choose for
’solve’ is to find a parametrization for all solutions, like we did in the second
example above. We will see how to do this in a lot of cases, but the (sad?lucky?)
truth is that such a parametrization exists only for a small subset of all Dio-
phantine equations. So, we do something which is often a helpful tactic when
faced with a seemingly untractable question: temporarily give up and ask an
easier question. Rather then looking for all solutions, can we at least say, given
a Diophantine equation, whether it is the case that it has any solutions. This
is a question of the existence of a general algorithm: can we write a computer
program, which takes as an input an arbitrary equation, and then, after a finite
time, prints ’YES’ or ’NO’, depending on whether the equation has, or has not,
a solution? For example, it should print ’YES’ for x2 + y2 = z2 and ’NO’ for

1There are variations of this definition, with different restrictions on the coefficients of the
equations and unknowns. For example, Diophantus himself considered equations with rational
coefficients, as in the riddle, and looked for solutions that are rational numbers.
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x2 + 4y = 3. The question about the existence of such an algorithm figured un-
der number 10 in the famous list of 23 problems that David Hilbert distributed
after his seminal lecture in the year 1900. The answer turned out to be neg-
ative, and this was ultimately proved 70 years later, when Yu. Matiyasevich,
building on previous work of M. Davis, H. Putnam, and J. Robinson, showed
that there cannot be such an algorithm. The argument of the proof, which lies
beyond the scope of this lecture, is based on a special way of counting : it turns
out that there are ’more’ Diophantine sets than there are computable sets. For
a nice and accessible recent discussion on this topic, I recommend looking at
Bjorn Poonen’s article ”Undecidability in Number Theory”, in the Notices of
the AMS, vol. 55, #3 (available online).

Classification of equations. We have seen that the quest for solving all the Dio-
phantine equations is hopeless; it is time for a ’divide and conquer’ tactic. What
are the features that distinguish between Diophantine equations? A thing that
immediately comes to mind is the number of variables. There are equation in
one variable, like x5 − 3x2 = 1, in two variables, like y2 = x3 + x, in three
variables like x2 + y2 = z2, in four variables like x2

1 + x2
2 + x2

3 + x2
4 = 1, and so

on. We look at the one-variable case first.
An equation in one variable of degree n has exactly n solutions, counting mul-
tiplicities, if we allow complex values for the variables. So a strategy for finding
the solutions of a Diophantine equation in one variable is to first find the solu-
tions in the domain of complex numbers, then inspect them to see if any among
them are integers. Unfortunately, general formulas for solving equations exist
only for degrees up to 4, and the general equation of degree 5 and higher is un-
solvable, and this is an impediment to carrying out the first step in that strategy.
A roundabout approach is to use Newton’s secant method, to find approxima-
tions of the real solutions of the equation, and then check the integers that are
eventually approximated by these solutions. This is now a working strategy.
There is another, easier way to find the solutions of one-variable Diophantine
equations, based on the following:

Criterion. Let a0x
n + a1x

n−1 + · · · + an−1x + an = 0 be an equation with
integer coefficients, which has the rational number (in lowest terms) p

q as one of
its solutions. Then p divides an and q divides a0.

As an illustration, let us look at the equation 2x5+9x4+3x3+38x2−11x−5 = 0.
The criterion says that the only possible rational roots are ± 1

2 ,±1,± 5
2 ,±5.

Checking them all out, gives that only 1
2 and −5 are indeed roots, so the only

solution of the above, as a Diophantine equation, is x = −5.
So in the one-variable case, we have as good an answer, as we could hope for; in
more variables, the situation is different. Two-variable Diophantine equations
have been a subject of extensive research, and their theory constitutes one of
the most beautiful, most elaborate, parts of mathematics, which nevertheless
still keeps some of its secrets for the next generation of researchers. We will
get some glimpses of it today, and then revisit for a different perspective on
a few more occasions during the course. And as for Diophantine equations
in three and more variables, our knowledge is perhaps best characterized as
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modest. For example, we know that the smallest solution of x3 + y3 + z3 = 70
is x = 11, y = 20, z = −21 (found by computer search), but for the slightly
different equation x3 + y3 + z3 = 33 it is still unknown whether any integer
solutions exist at all.
We now look for other features that divide the Diophantine equations into classes
in addition to the number of variables.
One that easily suggest itself is the total degree of an equation, which is the
largest number one could get by adding the degrees of a single monomial in the
equation. For example, x5 +11x3y2−3x2yz4 = 13 has total degree 2+1+4 = 7.
The most accessible slice here are the Diophantine equations of total degree one,
and this is what we talk about next.

Linear Diophantine equations. The general linear Diophantine equation is
a0x0 + a1x1 + · · ·+ anxn = b;
it has a solution if and only if every integer that exactly divides all of the
coefficients a0, a1, . . . , an, divides b as well. If there is one solution, then there
are infinitely many of them. So a linear Diophantine equation has either no
solutions, or infinitely many solutions, and we have the above important and
simple criterion for distinguishing between this two extremes. For example, the
linear Diophantine equation 12x+21y+15z = 7 has no solutions, since 3 divides
12, 21, and 15, but does not divide 7, while 12x + 21y + 14z = 7 has infinitely
many solutions, since the only numbers that divide simultaneously 12, 21, 14,
are ±1, and they trivially divide 7 as well. The above property of 12, 21, 14 will
occur frequently in our discussions, so we give it a special name:

Definition. We say that the integers in the set {k1, k2, ...kn} are relatively prime
when the only numbers that divide them all are 1 and −1.

Note that relatively prime is not the same as pairwise relatively prime; in the
case above {12, 21} are not relatively prime, and neither are {21, 14} or {12, 14},
but {12, 21, 14} are relatively prime.
Now that we know that 12x + 21y + 14z = 7 has infinitely many solutions, the
natural question arise whether could we find them. The answer is yes, there
exists an algorithm which produces the general solution of a linear Diophantine
equation. We will not give the algorithm here, though. One reason being that
we will talk about it in the workshop about computers and number theory, and
another that it is relatively easy to come with an ad hoc solution for any given
linear Diophantine equation. In our case, we could first notice that all the values
of x that satisfy the equation should be divisible by 7. So any solution should
come from a solution of the equation 12t + 3y + 2z = 1, where x = 7t. Next, all
the values of y that satisfy this new equation better be odd (Why?). Hence we
simplify to
12t + 3(2u + 1) + 2z = 1, i.e. to 6t + 3u + z = −1, where y = 2u + 1. Now we
could write the general solution:
x = 7t, y = 2u + 1, z = −1− 6t− 3u, where t, u run independently through all
integers.
Notice that the 7 in x is the same as the greatest common divisor of 21 and 14,
which were the coefficients of y and z in the original equation, and odd/even in
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y has to do with 2, which was also the greatest common divisor of 12 and 14,
the coefficients of x and z, respectively. With some effort, and an extra step
or two, this ad hoc solution could be turned into an algorithm that will work
in general. However, be warned that the parametrization of the solution is far
from unique.

Pythagorean triples. We now turn to a famous non-linear, second-degree Dio-
phantine equation in three variables: x2 + y2 = z2. Any triple (x, y, z) that
solves it gives the lengths of the legs and the hypothenuse of a right triangle,
by the converse of the celebrated Pythagoras theorem, hence the name.
We will describe a parametrization for all the Pythagorean triples, and for this
we need first a reduction. A Pythagorean triple (x, y, z) is called primitive, if
{x, y, z} are relatively prime. For example (3, 4, 5) is a primitive Pythagorean
triple (PPT for short), and while (30, 40, 50) is a Pythagorean triple, since
302 + 402 = 2500 = 502, it is not a PPT. Observe that is enough to find
all PPTs first, since then any Pythagorean triple could obtained by multiplying
each member of a specific PPT by some integer. Also note that the three in-
tegers in a PPT are pairwise relatively prime. So in a ppt (x, y, z) at least one
of x and y is odd. It can’t be that both x and y are odd, since then x2 + y2 is
an even number, not divisible by 4, and such number is never a square. So we
could assume that x is odd, y is even, z is odd. (The other ppt’s are obtained
by permuting x and y.)
Now time for a little algebra: Rewrite the equation as

y2 = z2 − x2 = (z − x)(z + x) = (2u)(2v), where u =
z − x

2
, v =

z + x

2
.

Under our assumptions both z − x and z + x are even, so u and v are in fact
integers. They are also relatively prime, since if a number d divides both u and
v, then it divides their sum u+v = z and their difference v−u = x, and because
z and x were assumed relatively prime, d = ±1.
Next, the product of the relatively prime numbers u and v is the perfect square
(y/2)2, so u and v must be squares themselves, say u = m2 and v = n2.
To summarize, our assumptions allowed us to deduce the existence of integers
m and n such that

x = n2 −m2, y = 2mn, z = m2 + n2

Conversely, for each of the integers m, n above, (x, y, z) is a Pythagorean triple,
since

(n2 −m2)2 + (2mn)2 = (m2 + n2)2

as it is easily seen after squaring and simplifying.
We remark that we get a PPT exactly when m and n are relative prime of
different parity.
As an example, we show that every odd number is part of a Pythagorean triple.
Indeed, take say 17, and look for the two consecutive integers that add up to 17 -
they are 8 and 9. Take m = 8, n = 9. Then n2−m2 = 92−82 = (9−8)(9+8) = 17,
while 2mn = 144 and m2 + n2 = 145. So 172 + 1442 = 1452.
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The geometry of an equation. We have seen a lot of equations, and used some
algebra, but where is the geometry promised in the title? Well, here it comes.
The Cartesian geometry tells us how to go from two-variable equations to curves
in the XY -plane, and vice versa. So to look for certain kind of solutions (in-
tegers, rational numbers) of a two-variable equation is the same as to look for
points with certain types of coordinates (integer valued, rational numbers val-
ued) on the associated curve. As an example of this approach we give a second
solution to the equation x2 +y2 = z2. First notice that with each of its primitive
solutions (x, y, z) we could associate a rational solution (in lowest terms) of the
equation X2 + Y 2 = 1, and vice versa, via the transformation formulas

X =
x

z
, Y =

y

z
, and z = denomr(X) = denomr(Y ), x = zX, y = zY

For example, the solution x = 3, y = 4, z = 5 of x2 + y2 = z2 corresponds to the
solution X = 3

5 , Y = 4
5 of X2 + Y 2 = 1.

What we just observed is important and worth repeating:
There exists an one-to-one correspondence between the primitive Pythagorean
triples and the rational points on the unit circle.
So we can concentrate on finding the points with rational coordinates on the
circle X2 + Y 2 = 1 of radius 1 centered at (0,0) in the XY -plane.

6

O

(X,Y)

-
(-1,0)

X=1

Y=t(X+1)
(1,2t)

X2 + Y 2 = 1

Looking at this very imperfect picture, here is our action plan. We consider an
arbitrary non-vertical straight line that passes through the point (−1, 0). It in-
tersect the vertical line X = 1 at a point (1, 2t), for some number real number t.
Then the equation of the first line is Y = t(X + 1), and we could get the points
where it intersects the circle as solutions of the system of equations

X2 + Y 2 = 1
t(X + 1) = Y

Expressing Y from the second as a function of X and plugging into the first
we get that the two X coordinates satisfy the equation X2 + t2(X + 1)2 = 1
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which is the same as the quadratic equation (1 + t2)X2 + 2t2X + t2− 1 = 0. We
could solve this using the quadratic formula, but since we already know that
one solution is X = −1, because the line intersects the circle at (−1, 0), the
other solution is X = 1−t2

1+t2 , by Viète’s formula. For Y we now get Y = 2t
1+t2 .

Now notice that a rational value for t gives a rational value for X and Y, and
vice versa, rational values for X and Y correspond to a rational t, since t = Y

X+1 .
Geometrically, we get a correspondence between the rational points on the line
X = 1 and the rational points on the circle X2 + Y 2 = 1. Any pair of corre-
sponding points is connected by a line through (−1, 0) with rational coefficients,
and any such line connects two corresponding points.
So we conclude that all rational points on the circle are given by ( 1−t2

1+t2 , 2t
1+t2 ),

where t runs through all rational numbers, plus the special point (-1,0), which
in a way corresponds to t being ’infinite’.
This in turn gives the description of all pythagorean triples: Let t = m

n in lowest

terms, so that X = 1−(m/n)2

1+(m/n)2 = n2−m2

n2+m2 and Y = 2(m/n)
1+(m/n)2 = 2mn

n2+m2 .

Then x = n2 − m2, y = 2mn, z = n2 + m2 give all pythagorean triples when
m, n run through all integers. Notice that this the exact same description we
got in the previous section.

Elliptic curves. The geometric approach of the last section was so successful,
that it is only natural to try applying it to some more complicated equations. We
do exactly this now, and look at the equations Y 2 = X3 +X2 and Y 2 = X3 +X,
both of total degree 3.
To extend the method, let see what was essential about it. One, we had a point
with rational coordinates, to project from. Two, a rational line through that
point crossed the curve in exactly one other point, which then necessarily had to
be with rational coordinates as well. So the method works for any two-variable
second degree equation with a rational point.
As a straight line crosses a general curve of degree 3 in three points, rather than
two, the method will not apply straightforward to the two equations above. We
could navigate around this in the case of Y 2 = X3 + X2. If we project from
the very special point (0, 0), where the curve self-intersects, then every straight
line will cross the curve in exactly one more point, and we could proceed in the
same fashion as we did with X2 + Y 2 = 1 and find a rational parametrization
for all the solutions: we end up with X = t2 − 1 and Y = t(t2 − 1).
So Y 2 = X3 + X2 from the point of view of Diophantine equations is not that
different from X2 + Y 2 = 1. Both of them are what is called ”rational curves”.
Although (0, 0) is on Y 2 = X3+X as well, it does not have the desired property.
A line through it will intersect the curve in two more points, and it might very
well be the case when they are both non-rational, even if the line is rational.
This tells us that the curve is Y 2 = X3 + X is essentially different than the
circle. It is an example of a class called elliptic curves .
The geometric method, properly modified, works for elliptic curves too, as shown
in the following deep result, due to L.J. Mordell, a British mathematician from
the first half of the 20th century:
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Mordell’s Theorem: For every elliptic curve there exist a finite number of ratio-
nal points on that curve, so that starting with them, one could get to any other
rational point on the curve by a sequence of operations of the following three
kinds:
• reflecting with respect to the x axis a known rational point to get another

rational point;
• drawing a tangent through a known rational point and adding the second

intersection point to the set of known rational points;
• drawing the chord connecting two known points and adding the third in-

tersection point of the chord with the curve to the set of known rational points.
Despite this algorithmic description, the problem of finding all rational points
on an elliptic curve is still not completely solved, since we don’t yet have a
proven method for generating the starting set of rational points.
The theory of Elliptic curves is a beautiful part of Mathematics; it contains re-
sults of striking elegance, has supplied methods for solving practical problems,
and despite the active research efforts of a generation of mathematicians, still
keeps some of its deepest secrets untold.

Lecture Highlights, Further Reading, Extra Problems:

• Diophantine equations are equations with integer coefficients for which a
solution is sought where all unknown variables take integer values. Dio-
phantine equations are difficult to solve.

• Problem solving strategy: When faced with a very difficult problem, it
may help to try a simplification of the problem first.

• Problem solving strategy: It helps to classify large problems into smaller
pieces, and attack each piece separately.

• Coordinates give a relation between equations and curves. Using geometric
methods may produce revealing solutions to algebraic problems.

• Further reading: Rational Points on Elliptic Curve, by J.H. Silverman and
J. Tate, part of the Undergraduate Text in Mathematics book series.

• Solve the Diophantine equations x2 +y2 = 10z2 and x2 +2xy +2y2 = 5z2.

• Carry out details to find the parametrization of Y 2 = X3 + X2 described
in the text. Find some points on Y 2 = X3 + 1, using Mordell’s theorem.

• Try applying the procedures we used to solve the Pythagorean equation
x2 + y2 = z2 to the equation x3 + y3 = z3. This last equation is the first
case of the Fermat Last Theorem. It was shown by Euler that it has no
solutions with xyz 6= 0. Where do the geometric and the algebraic method
fail? Do they really fail?
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