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Small Tool, Great Use: The Language of Congruences

Equations without solutions. In the previous lecture we have seen that for
Linear Diophantine equations there exists a simple criterion that distinguishes
between the ones that have any solutions, and the ones that have not. Namely,
the general LDE a0x0 + a1x1 + · · · + anxn = b has a solution if and only if
every number that divides all of the coefficients a0, a1, . . . , an, divides b as well.
Paraphrasing this criterion, we could say that a LDE has no solution if and only
if there exists a number d which divides all of the coefficients a0, a1, . . . , an, but
does not divide b.
It is worth pausing here for a second and thinking about what it did: we had an
equivalence, (”if and only if”) and negated both sides. The universal quantifier
in the first version – ”every number” – became an existential quantifier when
negated - ”there exists”. Such play with logic is very usual in mathematics
texts, but may be hard to grasp when first encountered; mastering it to the
point when it becomes intuitive is going to greatly improve both your reading
and writing skills. A good exercise to this end is to go through a list of theorems
from an arbitrary book, and negate every statement.
Going back to the LDE criterion, we look at the following example:

1255x + 70y + 425z = 37373

Does it has any solutions? You will not need to look at it for a second time to
see that the answers is no. It is evident that 5 divides the coefficients on the
left, and hence for any values of the variables x, y, z 5 divides the left hand side
of the equation; but it does not divide the right hand side.
There are two points to be made here. One, we didn’t really performed the
division to get our conclusion (else, what is the quotient?), the only thing that
we are immediately seeing despite the large numbers are the remainders. Or,
to reiterate, the important information is in the remainders. So in the next and
in the last sections we will introduce two ways to concentrate on this essential
information.
The second point to be made is that it wasn’t really significant that we have a
LDE to get the ’no solutions’ conclusion. The same conclusion is immediately
valid for example about the non-linear equation 1255x2+70y3+425xyz = 37373.
We will generalize this to a necessary condition for existence of solutions for
Diophantine equations in the next section, where we could write more concisely
with the notations introduced there.

Congruences. We take a more formal approach now, and give a few rigorous
definitions and then list some properties connecting them.

Definition. Let a and b be integers. We say that a divides b, and write a|b, if
there exists an integer c, such that b = ac.
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Definition. Given two arbitrary integers a, b and a positive integer m, we say
that a is congruent to b modulo m, and write a ≡ b (mod m) when m|b− a.

For example, 7|42, since 42 = 7 × 6, and 23 ≡ 11 (mod 6), since 23 − 11 = 12
and 6|12.
We next list a few elementary properties of congruences. Let a, b, c be arbitrary
integers and let m, n be positive integers. Then

• a ≡ a (mod m)

• If a ≡ b (mod m), then b ≡ a (mod m)

• If a ≡ b (mod m), and b ≡ c (mod m) then a ≡ c (mod m)

• If a ≡ b (mod m), then a + c ≡ b + c (mod m)

• If a ≡ b (mod m), then ac ≡ bc (mod m)

• If a ≡ b (mod m), then an ≡ bn (mod m)

• If a ≡ b (mod m), and n|m then a ≡ b (mod n)

All of this are easy to prove, and we leave the proofs as an exercise.
One could also write congruences with an unknown variable to solve for.
For example, let us find all integers s, which are solutions of the congruence
7x2 + 3x− 4 ≡ 0 (mod 15), i.e. we need values s1, s2, . . . , sk, . . . such that

7x2 + 3x− 4 ≡ 0 (mod 15)⇒ ∃i, x ≡ si (mod m)

So we consecutively simplify

7x2 + 3x− 4 ≡ 0 (mod 15)⇔ 14x2 + 6x− 8 ≡ 0 (mod 15) ⇔
−x2 + 6x− 8 ≡ 0 (mod 15)⇔ x2 − 6x + 9− 1 ≡ 0 (mod 15) ⇔

(x− 3)2 ≡ 1 (mod 15)

And since 12 ≡ 42 ≡ 112 ≡ 142 ≡ 1 (mod 15) our list is 4, 7, 11, 17.
Note that we could add others integers to the list of the solution, for exam-
ple −4 or 2 are solutions, as one could easily check. But they are not really
new solutions, since −4 ≡ 11 (mod 15) and 2 ≡ 17 (mod 15). So when giving
the solutions of a congruence, we list only the solutions that are pairwise non-
congruent. Since there are only finitely many non-congruent integers for any
fixed modulus (to be precise: there are only m non-congruent numbers modulo
m - for example 0, 1, 2, . . . ,m−1 give such a maximal system of representatives),
one could always solve a congruence equation by an exhaustion methods - check
all the finitely many non-congruent numbers in a system of representatives of
the residues of the modulus, to see which of them are solutions.
As an illustration, we solve the congruence x3 + 2y2 ≡ 3 (mod 5). For a system
of non-congruent numbers modulo 5 we choose 0, 1, 2, 3, 4 and we have 25 pairs
of possible solutions for (x, y). We summarize the results for x3 + 2y4 in the
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following table:
x:y 0 1 2 3 4
0 0 2 3 3 2
1 1 3 4 4 3
2 3 0 1 1 0
3 2 4 0 0 4
4 4 1 2 2 1

So we see that all the solutions are
x ≡ 0 (mod 5), y ≡ 2 (mod 5), or x ≡ 0 (mod 5), y ≡ 3 (mod 5), or
x ≡ 1 (mod 5), y ≡ 1 (mod 5), or x ≡ 1 (mod 5), y ≡ 4 (mod 5), or
x ≡ 2 (mod 5), y ≡ 0 (mod 5).
The following simple observation leads to an important necessary condition for
existence of solutions of diophantine equations:
Let the diophantine equations f(x1, x2, . . . , xk) = 0 has at least one solution.
Then for any positive integer m, the congruence f(x1, x2, . . . , xk) ≡ 0 (mod m)
also has a solution.
Therefore, if we could find a modulus m, for which the congruence has no solu-
tions, we can conclude that the original diophantine equation has no solutions
as well.
Example: Consider the equation 15x3 − y6 = 32, and take m = 7. The con-
gruence 15x3 − y6 ≡ 32 (mod 7) is equivalent to x3 − y6 ≡ 4 (mod 7) and the
last one has no solutions, as x3 ≡ 0, 1, 6 (mod 7) and y6 ≡ 0, 1 (mod 7) so
x3 − y6 could be congruent to 0, 1, 5, 6 modulo 7, but never 4 (mod 7). Hence
x3 − y6 ≡ 4 (mod 7) has no solutions, and neither does the equivalent congru-
ence 15x3 − y6 ≡ 32 (mod 7).
Therefore the original equation, 15x3 − y6 = 32 has no integral solutions.

The Chinese Remainders Theorem. A lot of problems lead to two or three
linear congruences that have to be solved together. Consider for example the
following riddle. A poor fellow had three daughters, and a small fortune of x
golden coins. Once it was time to marry the first one, he threw a big party,
which cost him 2 coins, and split the leftover of his fortune into equal parts
between his three daughters, his wife and himself. Three years later, with hard
work he managed to accumulate as much gold as he had prior to the marriage
of his first daughter, and threw a second party, to marry his second daughter.
This time the party cost him 3 golden coins (inflation was known even to people
in the ancient times), and afterwards he split the remaining money equally
between himself, his wife, and his two daughters. Two more years passed before
he managed to recover from the spending and bring his fortune back to x golden
coins again. Then he threw a third party, which cost him 5 golden coins, and
split the leftover of his fortune between himself, his wife, and his last daughter.
What was the fortune he had to begin with?
Reading again carefully, we find out that all we know about the number of
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golden pieces, x, is that it satisfies the following three congruences:

x ≡ 2 (mod 5)
x ≡ 3 (mod 4)
x ≡ 4 (mod 3)

With some trial and error guessing, we find out that a possible solution is x = 7.
The following statement, known as the Chinese Remainder Theorem, gives us a
condition when such systems are solvable, and a bound of the minimal solution.

Theorem. Let k be any natural number. Given arbitrary integers c1, c2, . . . , ck

and positive integers m1, m2, . . . mk which are pairwise relatively prime, the sys-
tem of linear congruences

x ≡ c1 (mod m1)
x ≡ c2 (mod m2)
· · ·

x ≡ ck (mod mk)

has a unique solution x ≡ x0 (mod m1m2 . . . mk)

There are various algorithms how to solve such systems of congruences, which
help to reduce the amount of guessing necessary. A fast and still a simple one
is to first find numbers x1, x2, . . . , xk such that

x1 ≡ 1 (mod m1) x2 ≡ 0 (mod m1) · · · xk ≡ 0 (mod m1)
x1 ≡ 0 (mod m2) x2 ≡ 1 (mod m2) · · · xk ≡ 0 (mod m2)
· · · · · · · · · · · ·

x1 ≡ 0 (mod mk) x2 ≡ 0 (mod mk) · · · xk ≡ 1 (mod mk)

Then the solution is x0 = c1x1 + c2x2 + . . . ckxk. For example, in the golden
coins case we easily find x1 = 36 (a multiple of 12, one greater than a multiple
of 5), x2 = 45 and x3 = 40, so that
x ≡ 2 ∗ 36 + 3 ∗ 45 + 4 ∗ 40 (mod 60)⇔ x ≡ 367 (mod 60)⇔ x ≡ 7 (mod 60).
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