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Lecture 3 (29 May 2008)

Divisibility, Factoring, Primes.
The Fundamental Theorem of Arithmetic.

Overview. The goal of this lecture is to provide a proof of the Fundamental
Theorem of Arithmetic, which states that every positive integer greater than 1
could be decomposed, in an essentially unique way, as product of prime numbers.
To this end, we first built the solid foundation that underlies all proofs, and list
the axioms of the integers we distilled in our first workshop. Then we introduce
the simple division with remainder property and discuss the prime numbers,
before finally proving the Fundamental Theorem.

WOP and PMI. These are the abbreviations for the Well Ordering Principle
and the Principle of Mathematical Induction, two equivalent forms of the axiom
of the system of the integers, Z that distinguishes it from all the other rings.
Let us list all the axioms we discussed during the workshop:

1. Z is closed under two operations, ” + ” and ”.”

2. Both ”+” and ”.” are commutative and associative.

3. The distributive law hold: a(b + c) = ab + ac, ∀a, b, c ∈ Z.

4. In Z there is a neutral element with respect to ”+”, denoted 0, such that
a + 0 = a, ∀a ∈ Z.

5. In Z there is a neutral element with respect to ”.”, denoted 1, such that
a · 1 = a, ∀a ∈ Z.

6. Every element a ∈ Z has an additive inverse, i.e. there is a′ ∈ Z such that
a + a′ = 0.

7. PMI: Z has a distinguished subset, the natural numbers, denoted N, and
defined by the three properties:

• 1 ∈ N
• If n ∈ N then n + 1 ∈ N.

• Every element in N is obtained by one of these two rules.

8. (Trichotomy) For any a ∈ Z, exactly one of these three options hold:

• a = 0;

• a ∈ N;

• −a ∈ N;
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The Well Ordering Principle states that every non-empty set of positive integers
has a minimal element, i.e. if S ⊆ N is non-empty, then ∃a ∈ S such that for
every other b ∈ S, a < b. It is equivalent to PMI. Indeed, let S be a non-empty
set of positive integers, which has no least element. This means that there is
a infinite decreasing sequence a1 > a2 > a3 . . . of elements of S. But every
element of S is a positive integer, in particular a1 ∈ N and by PMI there are
only finitely many positive integers smaller than a1, contradiction. Therefore
PMI implies WOP. We don’t need the implication in the other direction, so will
skip its proof.

The Division Algorithm and the Euclidean Algorithm. The Well Ordering Prin-
ciple is the main ingredient in the proof of the following statement:

Theorem. Given arbitrary a, b ∈ N there exists unique non-negative integers q
andr, such that a = bq + r and 0 ≤ r < b.

Proof. Let S = {a − bs|s ∈ Z, a − bs ∈ N}. This set is non-empty, since for
example it contains a = a− b · 0, and hence by WOP it has a minimal element.
Call it r, and the value of s for which it is obtained call q. Then a = bq + r for
non-negative integers q, r and if r > b then a − b(q − 1) = r − b is also in S in
contradiction of the choice of r to be the smallest element of S. Hence 0 ≤ r < b
as needed. For the uniqueness, let q, r and q′, r′ have the desired properties.
Then b(q − q′) = r − r′, so b|r − r′, while |r − r′| < b, so r = r′ and then q = q′

as well.
Repetitive use of the above division algorithm is the ingredient of the famous
Euclidean algorithm. Let a, b be positive integers. Do the divisions

a = bq1 + r1 0 ≤r1 ≤ b

b = r1q2 + r2 0 ≤r2 ≤ r1

r1 = r2q2 + r3 0 ≤r3 ≤ r2

...
...

In this way we get a decreasing sequence of remainders

b > r1 > r2 > r3 > · · · ≥ 0

so eventually there is an index k such that rk+1 = 0, and the last division looks
like rk−1 = rkqk. The output of the algorithm is rk, the last non-zero reminder.
Definition. Given two arbitrary positive integers a and b, we define their greatest
common divisor to be rk, the output of the Euclidean algorithm with inputs a
and b. With denote the greatest common divisor by gcd(a, b).
Looking backwards in the Euclidean algorithm, we see from rk−1 = rkqk that
rk|rk−1, then from the previous line rk−2 = rk−1qk−1 + rk that now rk|rk − 2,
going up we see that ultimately rk|b and from the first line then that rk|a.
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Moreover, again going backwards, we express

rk = rk−2 − rk−1qk−1 = rk−2 − (rk−3 − rk−2qk−2)qk−1 =
= uk−2rk−2 + vk−3rk−3 = · · · = uk−3rk−3 + vk−4rk−4 = . . .

= ua + vb

which means that gcd(a, b) could always be expressed as a linear combination
of a, b with some integer coefficients u, v. (Do an example for yourself and you
will see it more clearly.) It is also clear that every number that divides both
a and b also divides any linear combinations of a and b, so at the end divides
gcd(a, b). We put this three important properties together in the next theorem:
Theorem. The greatest common divisor d = gcd(a, b) of two positive integers a
and b has the following three properties:

1. d|a and d|b.
2. There exists integers u and v such that d = ua + vb.

3. If a number d′ has the properties that d′|a and d′|b, then d′|d as well.

The first and the third of these properties are characteristic for the gcd(a, b),
i.e. if a number satisfies them it also satisfies the second property and is the
unique output of the Euclidean algorithm for a and b.

Prime numbers. Not all numbers are created equal. A chocolate box often
contains 24 candies, and very rarely 23. The reason behind this is that 24 pieces
could be equally divided between 2 kids, or 3 kids, or 4, 6, 8, even 12, while
23 cannot be split non-trivially into equal parts. This property of 23 to be
indecomposable is shared with other numbers, like 2, 3, 5, 7, 11, 13, 17, 19, 23, 29
to name just the first few. These numbers have a special name.
Definition. A positive integer p > 1 is called prime when the only two positive
number that divide it are 1 and p itself. A positive integer greater than 1 which
is not prime is called composite.
According to that definition, a positive integer is either prime, composite, or
equal to 1.
There are infinitely many primes, as we shall see in the next lecture.

The Fundamental Theorem of Arithmetic. Let n > 1 be an integer. Then there
exist a positive integer k, primesp1, p2, . . . , pk and positive numbers e1, e2, . . . , ek

such that n = pe1
1 pe2

2 . . . pek

k . The number k, the list of primes, and the exponents
associated to them are uniquely determined by n.
Note that this theorem has two parts, an existence statement, and an uniqueness
statement. The latter one, may be surprisingly, is a much deeper property.
To prove the existence of a factorization, assume that there are some positive
integers, greater than 1, that don’t posses one. By the WOP then there is a
smallest such integer, call it m. It cannot be a prime, since a prime is its own
decomposition into primes, i.e. k = 1, p1 = m, e1 = 1. Therefore m is composite,
so there exists numbers a and b, 1 < a, b < m such that m = ab. Because of
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the choice of m to be the smallest integer for which the factorization fails, both
a and b are products of primes. But then so is clearly m, a contradiction, due
to the assumption that there are numbers that don’t posses a factorization into
primes.
To prove the uniqueness of a factorization, we first note that if a p is prime,
and a is an arbitrary integer, then either p|a or p and a are relatively prime. In
the second case, the Euclidean algorithm gives us two integers, u, v such that
pu + av = 1. So we could record the following important property,
Theorem. If a prime p divides the product ab, then it divides at least one of the
factors, p|a or p|b.
Indeed, if p|ab and p does not divide a for example, then by the above 1 =
pu + av, so b = pub + abv, and since p divides the right hand side of the last
equality, it must divide b.
This theorem is the heart of the proof of the uniqueness of factorization. For
simplicity, we do just the case of a product of two primes, the general case is
similar, but with more cumbersome notation.
Let n = p1p2 = q1q2. Then p1|q1q2, which implies that p1|q1 or p1|q2. In the
first case p1 = q1 and p2 = q2, while in the second case p1 = q2 and p2 = q1.
Therefore in both cases the two factorization are identical, as claimed.
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