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Lecture 6 (04 June 2009)

Sums of Squares

The two squares. In our first lecture we have found the description of all
Pythagorean triples, i.e. the solution of the diophantine equation x2 + y2 = z2.
A triple (x, y, z) of relatively prime positive integers with y being even, is
Pythagorean, if there exists m,n ∈ N, relatively prime of different parity, such
that x = m2 − n2, y = 2mn, z = m2 + n2, and all such pairs (m,n) give rise to
a primitive Pythagorean triple.
Looking at the equation from another perspective, we see that we have answered
the question about which squares could be represented as sum of two squares:
z2 is sum of two relatively prime squares if and only if z is a sum of squares. It
is natural to ask the questions: which natural numbers are sum of two squares?
The goal of this section is to give a complete answer to this question. We will
do so in five steps:

1. reduction to primes;

2. primes of the form 4k + 3 are never sum of two squares;

3. primes congruent to 1 modulo 4 always divide an integer of the form u2+1,

4. descent from u2 + 1 = np to x2 + y2 = p,

5. putting it all together.

Step 1. Consider the equality

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad + bc)2 (∗)

It says that if two numbers are sum of two squares, so is their product.
For example 493 = 17 ∗ 29 and 17 = 12 + 42, 29 = 22 + 52

give 493 = (1 ∗ 2 − 4 ∗ 5)2 + (1 ∗ 5 + 4 ∗ 2)2 = 182 + 132. Since every number
is product of primes, we are well advised to find out which primes are sum of
squares first, and gluing this together into an answer for the arbitrary integer.

Step 2. Let p = 4k +3 be a prime. Then p is not a sum of two squares. Indeed,
sum of two squares of the same parity is an even number, and if x is odd and y
even, then

x2 + y2 = (2x1 + 1)2 + (2y1)2 ≡ 4x2
1 + 4x1 + 1 + 4y2

1 ≡ 1 (mod 4)

while p ≡ 3 (mod 4). Note that we haven’t used that p is prime to get the result,
but only that p is congruent to 3 modulo 4.
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Step 3. Let p = 4k + 1 be a prime. We give an explicit integer u such that
u2 + 1 ≡ 0 (mod p). By Wilson’s theorem, (p− 1)! + 1 ≡ 0 (mod p). So

(p− 1)! + 1 = 1 ∗ 2 ∗ · · · (2k − 1) ∗ (2k) ∗ (2k + 1) ∗ (2k + 2) · · · (4k − 1) ∗ (4k) + 1 =
= 1 ∗ 2 ∗ · · · (2k − 1) ∗ (2k) ∗ (p− 2k) ∗ (p− (2k − 1)) · · · (p− 2) ∗ (p− 1) + 1 ≡
≡ 1 ∗ 2 ∗ · · · (2k − 1) ∗ (2k) ∗ (−2k) ∗ (−(2k − 1)) · · · (−2) ∗ (−1) + 1 ≡
≡ (−1)2k((2k)!)2 + 1 ≡ ((2k)!)2 + 1 (mod p)

and we see that u = (2k)! fits the bill.
Step 4. Here we show that if p = 4k + 1 is a prime, than p = x2 + y2 for some
x, y ∈ Z. By Step 3 there exist integers u, v and n such that u2 + v2 = np. If
n = 1, we are all set. We show that if n > 1, we could produce an equation
u2

1 + v2
1 = n1p, with n1 < n. Using this descent procedure repeatedly, we will get

the needed representation after finitely many steps.
If n is even, than u, v are of the same parity, and we take
u1 = (u− v)/2, v1 = (u + v)/2, n1 = n/2, and then u2

1 + v2
1 = n1p as one could

easily check. If n is odd, then select a, b ∈ Z with
a ≡ u (mod n) and b ≡ v (mod n), |a| < n/2 and |b| < n/2. and look at the
identity

(a2 + b2)(u2 + v2) = (au + bv)2 + (au− bv)2.

By the choice of a and b both the multipliers on the left and the adders on the
right are divisible by n, so setting
u1 = (au+bv)/n, v1(au−bv)/n, n1 = (a2+b2)/n works this time, with n1 < n/2
following from the inequalities on a, b.

Step 5. Here we put the arguments from the previous steps together, and prove:
Theorem. A natural number n could be written as a sum of the squares of two
integers if and only if every prime factor p of n which is of the form 4k+3 enters
the canonical decomposition of n to an even degree.
Examples: 306 = 2 ∗ 32 ∗ 17 is sum of two squares, while 102 = 2 ∗ 3 ∗ 17 is not.

Proof. Let n be a number with factorization of the kind described in the the-
orem. By repeatedly applying Step 4 and the formula (*) from Step 1, we
represent the factor of n comprising of all the powers of 2 and primes ≡ 1
(mod 4) as a sum of two squares. The remaining factor is then a perfect square,
so we distribute it and get the desired representation.
In the other direction, we have to show that if a number could be written as
a sum of two squares, than all primes of the type 4k + 3 divide it to an even
power.
Let x, y ∈ Z and p = 4k + 3 are such that p|x2 + y2.
Assume that (y, p) = 1. Then there is a z such that yz ≡ 1 (mod p) and the so
x2 + y2 ≡ 0 (mod p) gives (xz)2 ≡ −1 (mod p), or (xz)p−1 ≡ (−1)2k+1 ≡ −1
(mod p) in contradiction with Fermat’s little theorem. So the assumption
(y, p) = 1 is false. Hence p|y and then p|x, and consequently p enters n to
an even degree.
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The four squares theorem. This is the name of the following statement:
Theorem. Every natural number could be written as the sum of four integers.

It is contained Diophantus Arithmetica and was proved in 1770 by the French
mathematician Joseph Louis Lagrange. His proof used the identity

(a2 + b2 + c2 + d2)(t2 + u2 + v2 + w2) = (at− bu− cv − dw)2 + (au + bt + cw − dv)2+

+ (av − bw + ct + du)2 + (aw + bv − cu + dt)2

together with descent techniques to give a proof similar in spirit to the one we
exhibited for the two squares case.
Later the German mathematician Carl Gustav Jacobi used theta functions
which are a type of analytic objects possessing a lot of symmetry, and power
series expansions like

ϑ(x) =
∞∑

n=−∞
e−n2πx

to give a very different proof which also provided a formula for the number of
different ways a number could be represented as a sum of four squares.
A third important approach for proving this theorem was found by Herman
Minkowski, who used his convex body theorem, which in its simplest case says
that any convex and centrally symmetric shape in the coordinate plane with
area bigger than 4 contains a point with integral coordinates different than the
origin. Minkowski’s theorem could be used for a short and aesthetically pleasing
proof of the two squares theorem as well.

Beyond squares. Lagrange’s four squares theorem could be generalized in at
least two ways. One is the statement that every positive integer is sum of
k-figural numbers, in particular a sum of 3 triangular numbers, or 4 square
numbers, or 5 pentagonal numbers, etc. This was conjectured by Fermat and
proved by Louis Auguste Cauchy.
A second is the so called Waring problem. Waring conjectured, that given k ∈ N,
there exists a constant g(k), depending only on k, such that every n > 1 is sum
of at most g(k) k − th powers. For example, Lagrange’s theorem implies that
g(2) ≤ 4, and since 7 cannot be represented as a sum of 3 squares, g(2) = 4.
The Waring conjecture has been proved, using methods from analytical number
theory, which are very different that any part of the approach we used in the
prove in the two squares theorem. However, the exact value of g(k) is still
conjectural, and his been established only for k ≤ 6, in particular we know that
g(3) = 9, g(4) = 19.

Combinations of squares. Which numbers are sums of the form x2+2y2? What
about x2 +3y2, or more general x2 +ny2? We will say a few words on this ques-
tion, which is partially answered by Gauss Reciprocity Law, and has ultimately
lead to a whole new mathematical discipline, namely the Class Field Theory.
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