
Boston University
Summer I 2008

MA341 Number Theory
Kalin Kostadinov

Lecture 10 (19 June 2008)

The Brave New World of p-adic Numbers

Equations and Congruences. In this last lecture we return back to our first
topic, the solutions of Diophantine equations, and take a look from a somewhat
different perspective. We have used congruences to a great effect in showing
that a given Diophantine equation has no solutions. This was based to the
simple observation:

Observation. If a Diophantine equation P (x1, . . . , xn) = 0 has a solution, then
the congruence P (x1, . . . , xn) ≡ 0 (mod m) has a solution for each m ∈ N.

So in a lot of examples we were able to show that an equation has no solutions by
exhibiting a modulus for which the congruence has no solutions. For example,
there are no x, y, k ∈ Z such that x2 + y2 = 4k + 3, since the congruence
x2 + y2 ≡ 4k + 3 (mod 4) has no solutions. The difficult part here is guessing
the modulus m for which the congruence will have no solutions. For a particular
m ∈ N it is simple to figure out whether a congruence has a solution or not:
there are only finitely many possibilities to try, and one could readily check
them all.
One may ask, in the cases where we were unable to find a modulus m to do the
work, was it that we haven’t tried hard enough? Or, to put it in another way:

Question. If a Diophantine equation P (x1, . . . , xn) = 0 has no solutions, is
there a modulus m, for which the congruence P (x1, . . . , xn) ≡ 0 (mod m) has
no solutions?

This the question that we will investigate in this section. We will first look at
the one variable case, and try to find a polynomial P (x), for which the equation
P (x) = 0 has no solutions, but the congruences P (x) ≡ 0 (mod m) has a
solution modulo every given m ∈ N.
We start by observing that it is enough to show solutions for modules m that
are powers of primes. Indeed, imagine that we have shown that the congruence
P (x) ≡ 0 (mod pN ) has solution xp,N for every prime p and every exponent
N ∈ N. Let m ∈ N be arbitrary. We could factor it as m = pe1

1 . . . pek

k . By the
Chinese Remainder Theorem, we could choose an x ∈ N which satisfies the k
congruences x ≡ xpi,ei

(mod pi
ei), 1 ≤ i ≤ k. By its choice then x will satisfy

the k congruences P (x) ≡ 0 (mod pi
ei), and therefore P (x) ≡ 0 (mod m).

Before considering modules of the type pN , we look simply at primes. Linear
equations that are solvable modulo every prime are also solvable in integers by
the criterion for solvability of Linear Diophantine equations, so we look at the
next simplest case, that of quadratic equations. The equation x2 + 1 = 0 has
no integral solutions, but we know that the congruence x2 + 1 ≡ 0 (mod p) is
solvable for each prime p ≡ 1 (mod 4) by the first part of the Law of Quadratic
Reciprocity, which says

(
−1
p

)
= (−1)

p−1
2 . The congruence also has a solution

x = 1 modulo p = 2. So if we could find an integer a, such that
(

a
p

)
= 1
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for primes p ≡ 3 (mod 4), then the congruence (x2 + 1)(x2 − a) ≡ 0 (mod p)
will have a solution modulo every prime number p. There is no such a which
is not a perfect square; however, we could go a step further and notice that
the primes p ≡ 3 (mod 4) are in one of the two categories: p ≡ 3 (mod 8) or
p ≡ 7 (mod 8). Let p be a prime in the second of the above categories. Then
we know that

(
2
p

)
= 1, so the congruence x2 − 2 ≡ 0 (mod p) is solvable. For

a prime in the first category, both
(

2
p

)
= −1, and

(
−1
p

)
= −1, so

(
−2
p

)
= 1,

so the congruence x2 +2 ≡ 0 (mod p) is solvable for such primes. Putting it all
together, we see that the congruence

(x2 + 1)(x2 − 2)(x2 + 2) ≡ 0 (mod p)

has a solution for every prime number p. The respective equation has no integral
solutions, since none of

√
−1,

√
2,
√
−2 is an integer.

Next, we go from a prime module p to a power pN . We do this for a numerical
example first. Take the prime p = 7. Then, the middle factor is the one that
has a solution, for x2 ≡ 2 (mod 7) we could take x = 3 or x = −3. Let a1 be
one of these choices, and to be specific, let a1 = 3. We show that there are is
an infinite sequence, a1, a2, a3, . . . , such that a2

N ≡ 2 (mod pN ) for any N ≥ 2,
and moreover for that sequence aN ≡ aN−1 (mod pN−1). The other choice for
a1 will lead to a second sequence with the same properties.
Let us look at x2 ≡ 2 (mod 72), and assume it has a solution a2. Then a2

2 ≡ 2
(mod 72) implies a2

2 ≡ 2 (mod 7), so a2 ≡ ±3 (mod 7), and we could choose
a2 ≡ a1 ≡ 3 (mod 7). Then a2 = 3 + 7t2 for some t ∈ N, and the congruence
for a2 simplifies to

a2
2 − 2 ≡ (3 + 7t2)2 − 2 ≡ 9 + 42t2 + 49t22 − 2 ≡ 7 + 42t2 (mod 49).

There are two things to notice: first, this is not anymore a quadratic congruence
for t2, but linear, and second, it is now, after the possible division by 7, a
congruence modulo p = 7. Solving it, we find t2 ≡ 1 (mod 7) which gives
a2 = a1 + 7 ∗ 1 = 10.
We go the to the next step, and look for a3, such that a2

3 ≡ 2 (mod 73) and
a3 ≡ a2 (mod 72).
Then a3 = a2 + 49t3 and hence

a2
3−2 ≡ (10+49t2)2−2 ≡ 100+2∗10∗49t3+74t23−2 ≡ 98+2∗10∗49∗t2 (mod 73).

Again, we get a linear congruence for t3, which is solvable, because of the choice
of a3, 49|a2−2 = 98 and the congruence simplifies to the congruence 2+20t23 ≡ 0
(mod 7), for which t3 = 2 is a solution. So we get

a3 = a2 + 49 ∗ 2 = 3 + 1 ∗ 7 + 2 ∗ 72 = 108.

and 1082 − 2 = 11662 = 34 ∗ 343 so a2
3 ≡ 2 (mod 73), as expected.

We could keep on in the same fashion, and get

a4 = a3+73∗6 = 3+1∗7+2∗72+6∗73, a5 = a4+74 = 3+1∗7+2∗72+6∗73+1∗74
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and so on, where each aN satisfies aN ≡ aN−1 (mod 7N−1) and a2
N ≡ 2 (mod 7N ).

This procedure, which allows us starting from a solution modulo a prime num-
ber, to build solutions modulo arbitrary powers of this prime, will work for
primes other than 7, as well, as follows from the following statement, which is
a special case of an important theorem, known as Hensel’s Lemma:
Proposition. Let x2 ≡ a (mod p) has a solution a1 modulo the odd prime num-
ber p. Then there exists a sequence of integers a2, a3, . . . such that for each
i ∈ N the following two properties hold:

i) ai+1 ≡ ai (mod pi);
ii)a2

i ≡ a (mod pi).
Applying this propositions gives us what we want, or at least almost: The

congruence

(x2 + 1)(x2 − 2)(x2 + 2) ≡ 0 (mod pN )

is solvable for every odd prime number p and every exponent N. The piece that
is missing is solvability modulo high powers of 2. The given congruence is not
solvable modulo 8. But we could deal with by adding one more multiplier: we
let the reader check that x2 + 7 ≡ 0 (mod 2N ) has a solution for every N ≥ 1,
so we could claim that the congruence

(x2 + 1)(x2 − 2)(x2 + 2)(x2 + 7) ≡ 0 (mod m)

has a solution for every m ∈ N, while the Diophantine equation (x2 + 1)(x2 −
2)(x2 + 2)(x2 + 7) = 0 clearly has no solutions in integers.
Nevertheless, the statement ”P ≡ 0 (mod m) has solutions m implies the equa-
tion P = 0 has integral solution” is not totally lost. In fact there are large
classes of multi-variable polynomials P, for which such a statement is true,
when one asks in addition to the solvability of the congruences that that P = 0
has also real solutions. Such types of statements are known as Minkowski-Hasse
local-to-global principles.

p-adic numbers. The German mathematician Kurt Hensel, based on the lemma
we referred to above, invented a new kind of numbers.
Definition. Given a prime p, a p-adic integer is an infinite sequence of integers
a1, a2, . . . , such that for each N ∈ N, aN+1 ≡ aN (mod pN ).

We recognize that the sequence 3, 10, 108, . . . from the example in the pre-
vious section is a 7-adic number.
It might seem strange and first to think about number as being a sequence, but
than this is exactly how we define also real numbers - as sequences of decimal
approximations. To make this analogy even more visible: a real number has a
decimal expansion, say

√
2 = 1.41421 · · · = 1 + 4 ∗ 1

10
+ 1 ∗ 1

100
+ 4 ∗ 1

1000
+ . . .

and a p-adic number has a p-adic expansion
√

27 = 3 + 1 ∗ 7 + 2 ∗ 72 + 6 ∗ 73 + 74 + . . .
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so we could give a new, equivalent definition:

Definition. Given a prime p, a p-adic integer is a formal sum
α = d0 + d1 ∗ p + d2 ∗ p2 + d3 ∗ p3 + . . . ,
such that 0 ≤ di−1 ≤ p− 1 for each i ≥ 0.

If one wants to use the the language of mathematical analysis, that one
could say that in the same way that the set of real numbers is a completion
of the rational numbers with respect to the standard, Euclidean metric, the
p-adic numbers are a completion of the rational numbers with respect to the
unique metric on the rational numbers for which to numbers are close when
their difference is divisible to a high power of the prime p.
The p-adic integers could be added and multiplied together, so they provides us
with another example of a ring. Every ”usual” integer is also a p-adic integer,
for any prime p; it has the property that the sequence that defines it is constant
from a point onward, or equivalently, that the formal sum that correspond to
them has only zero digits after some point.
The definition of p-adic numbers make the following proposition a tautology

Proposition. Let p be a fixed prime. The congruence P (x) ≡ 0 (mod pN ) has
a solution for every exponent N if and only if the equation P (x) has a solution
in p-adic numbers.
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