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Linear Diophantine Equations

I. Introduction
Diophantine equations are named for Diophantus of Alexandria 
who lived in the third century. He however was not the first to 
study this subject. Indian mathematicians such as Baudhayana and 
Apastamba studied Diophantine equations as far back as c. 
800-600 b.c.e.. Later, in the Middle Ages, Indian mathematicians 
became the first to systematically explore ways of finding integral 
solutions of Diophantine Equations (1). These methods could be 
found in Indian mathematical texts dating as far back as 499AD. In 
Europe in the seventeenth century, Fermat made a study of 
Diophantine equations, and conjectured that x^n+y^n = z^n has no 
solutions for n greater than two. This conjecture, know as Fermat’s 
Last Theorem, remained as such until in 1994 it was proved by 
Andrew Wiles. (1) Most of what is known about the laws of 
Diophantine equations has been discovered in the twentieth 
century.

II. Linear Diophantine Equations
1. Diophantine Equations are equations with integral coefficients. 

Linear Diophantine equations are simply linear equations with 
integral coefficients, and are the simplest type of Diophantine 
equations. A linear Diophantine equation in two variables is a 
Diophantine equation of the form ax + by = c (2)

2. An example of such an equation follows (from 2)
“Twenty-three weary travelers entered the outskirts of a 
lush and beautiful forest. They fond 63 equal heaps of 
plantains and seven single fruits, and divided them 
equally.” (2, pg. 189-190) 

Let x be the number of plantains in a heap, and y be the 
number of plantains received by a traveler. This produces 
the LDE 

63x + 7 = 23y
x and y must be positive. Solving for y, 
y = (63x + 7) / 23
x = 5, and y = 14 is one solution. And in fact, there are an 
infinite number of solutions. (2)

3. Hundred Fowls Puzzle (from 2, pg 190): 
If a rooster is worth 5 coins, a hen is worth 3 coins, and three 
chicks together are worth one coin, how many birds totaling 100 
and be bought for 100 coins. 
This data gives 2 equations. Let x = number of roosters, y = 
number of hens, and z = the number of chicks

x + y + z = 100
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5x + 3y + z/3 = 100

from the first equation, z = 100 – x – y, and substituting this into 
the second equation, we get
5x + 3y + (1/3)(100-x-y) = 100
This simplifies to
7x + 4y = 100
solving for y we get
y = 25 – (7/4)x 
This implies that for y to be an integer, x must be a multiple of 4. 
Letting x = 4t, where t is an integer, we find
y = 25 – 7t and z = 75 + 3t
Since x is greater than or equal to zero, t is greater than or equal to 
zero. Since y is greater than or equal to zero, 25 – 7t is greater than 
or equal to zero. This implies that t is less than 25/7; therefore, t is 
less than or equal to 3. so t is greater than or equal to zero and less 
than or equal to three. This gives 4 solutions – one for each 
possible value of t (0, 1, 2, or 3) which are, 
x = 0, y = 25, z = 75
x = 4, y = 18, z = 78
x = 8, y = 11, z = 81
x = 12, y = 4, z = 84
4. Not every linear Diophantine equation has a solution

 For example (pg. 192, 2): 2x + 4y = 5 has no solution, since 2x + 
4y will always be even and 5 is odd

A LDE of the form ax + by = c is solvable iff d (= gcd(a,b)) 
divides c, and if x’, y’ is a solution, then all of the LDE’s solutions 
are given by x = x’ + (b/d)t and y = y’ – (a/d)t
Proof: (from 2, pg. 193)
Given a LDE ax + by = c with a solution
d = (a,b), so d divides a and b. Thus d divides (ax + by) which = c, 
so d divides c.
Suppose d divides c, then c = de for some integer e. since d = (a,b), 
there exist integers s.t. ra + sb = d ( d is a linear combination of a 
and b)*
Multiplying both sides by e, we get rae + sbe = de, which implies 
a(re) + b(se) = c.
Thus ax + by = c has solutions x’ = re and y’ = se
Therefore the LDE is solvable.
To show x = x’ + (b/d)t and y = y’ – (a/d)t is a solution, we 
substitute into the LDE for x and y to get
ax + by = a(x’ + (b/d)t) + b(y’ – (a/d)t)

= (ax’ + by’) + (abt/d) – (abt/d)
=ax’ + by’
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To show every solution x’’, y’’ is of the desired form:
Since x’, y’ and x’’, y’’ are solutions of the LDE,
ax’ + by’ = c     and     ax’’ + by’’ = c
ax’ + by’ = ax’’ + by’’

Therefore, a(x’’ – x’) = b(y’ – y’’)
Dividing both sides by d,

(a/d)(x’’ – x’) = (b/d)(y’ – y’’)
gcd((a/d), (b/d)) = 1
so, b/d divides (x’’ – x’)

hence x’’ – x’ = (b/d)t
x’’ = x’ + (b/d)t

and substituting for (x’’ – x’)
a(b/d)t = b(y’ – y’’)
(a/d)t = y’ – y’’
y’’ = y’ – (a/d)t

It follows from this theorem that if the LDE ax + by = c has a 
solution, it has infinitely many solutions
5. The Monkey and Coconuts Puzzle (2, pgs. 197, 226)

Five sailors and a monkey are marooned on a desert island. 
They spend the day gathering coconuts for food and decide 
to divide them up in the morning. During the night, one 
sailor wakes up and decides to divide them himself. He 
breaks the pile into five equal piles and gives the one 
remaining coconut to the monkey. He puts four of the piles 
back together and returns to his sleeping place with his pile. 
One by one, each of the sailors repeat this process through 
the course of the night. In the morning, they divide the 
remaining pile into five portions and give the remaining 
coconut to the monkey. Let n be the initial number of 
coconuts, and let u, v, w, x, and y be the numbers of 
coconuts each sailor took, and let z be the minimum portion 
received by each from the remaining pile in the morning. 
This leads to equations:
n = 5u + 1
4u = 5v + 1
4v = 5w + 1
4w = 5x + 1
4x = 5y + 1
4y = 5z + 1
These equations lead to the LDE 15625z – 1024n = -11529, 
which can be solved by the Euclidean algorithm: 

15625 = 15*1024 + 265
1024 =  3*265 + 229
265 = 1*229 + 36
229 = 6*36 + 13
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36 = 2*13 + 10
13 = 1*10 + 3
10 = 3*3 + 1
3 = 3*1

1=
  = 10 – (3*3)
  = 10 – 3*(13-10)
  = 4*10 – 3*13
  = 4*(36 – 2*13) – 3*13
  = 4*36 -11*13
  = 4*36 – 11*( 229- 6*36)
  = 70*36 – 11*229
  = 70*(265 – 229) – 11*229
  = 70*265 - 81*229
  = 70*265 – 81*(1024 – 3*265)
  = 313*265 – 81*1024
  = 313*(15625 – 15*1024) – 81*1024
 1 = 313*15625 – 4776*1024

multiplying by -11529, we get

313*15625*-11529 – 4476*1024*-11529 = -11529, so
 15625*(-3608577) – 1024*(-55062504) = -11529

so all of the solutions of the equation are given by 
z = -3698577 -1024t and n = -55062504 – 15625t;
n > 0, so -55062504 – 1024t > 0. Thus, t < 
-55062504/15625, i.e. t< -3524. Because of the equation 
for n, n is a minimum when t is a maximum, 

or alternatively by using congruencies, we find 

z = 1/5(4/5(4/5(4/5(4/5(4/5 * (n-1) – 1) -1) -1) -1) -1)

this can be rewritten as n(4/5)^5 – (1+ 4/5 +(4/5)^2 + 
(4/5)^3 + (4/5)^4 + *4/5)^5) = 5z

= n*(4/5)^5 – (1-(4/5)^6)/(1-4/5)

= n*(4/5)^5 – (5^6 – 4^6)/5^5

5^6 * z= 4^5 * n + 4^6 – 5^6

= (n+4)*4^5 = (Z+1)*5^6
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Which is congruent to 0 (mod 5)
But (4^5, 5^6) = 1, so n+4 is congruent to 0 (mod 5). N is a 
minimum when n+4 = 5^6 = 15625; n = 15621
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* The gcd of the positive integers a and b is a linear combination of 
a and b. 
Proof: (2, pg. 159)
Let S be the set pf positive linear combinations of a and b; that is s 
= {ma + nb s.t. ma + nb > 0, m, n in Z}
To Show that S has a least element:

Since a > 0, a = 1*a + 0*b is in S, so S is nonempty. So, by 
the well-ordering principal, S has a least positive element d.
To Show that d = (a,b)

Since d belongs to S, d = a’a + b’b for some a’ and b’
By the divison algorithm, there exist integers q and r such 
that a =dq + r, where r is greater than or equal to 0 and less 
than or equal to d. Substituting for d,

r = a – dq
= a – (a’a + b’b)q
= (1-a’q)a + (-b’q)b, so r is a linear combination of 

a and b. If r > 0 then r is an element of S. Since r<d, r is the 
smallest element in S, which is a contradiction. So r = 0; 
thus a = dq, so d divides a. Similarly, d divides b. Thus d is 
a common divisor of a and b.

To show that any positive common divisor d’ of a and b is less 
than or equal to d:

Since d’ divides a and d’ divides b, d’ divides (a’a + b’b); 
that is d’ divides d, so d’ is less than or equal to d

(This is similar to the proof of Bézout's identity, which states that 
given nonzero integers a and b whose gcd is d, then there exists 
integers x and y s.t. ax + by = d

6. Applications
a. Gaussian Integers 
1. A Gaussian Integer is a complex number of the form a 

+ bi, where a and b are integers
2. two Gaussian integers are considered prime if their gcd 

is 1, -1, i, or –i, which is to say that their gcd divides 
one.

3. Euclid’s Algorithm with Gaussian integers
To divide a by b in Gaussian integers, one looks for r 
and q s.t.

a = bq + r, Norm(r) < Norm(b)

In the complex numbers, positive and negative are not 
meaningful concepts, so the norms of two numbers are 
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used as a substitute concept. The Euclidean algorithm is 
applied in a similar way to the integers.

b. Fibonacci Numbers and LDE’s (from 2, pg. 201)
Consider the LDE Fn + 1x + Fny = c. Since any two 
consecutive Fibonacci numbers are prime, gcd(Fn + 1, Fn) = 1 
and the LDE has a solution

By Cassini’s formula, Fn + 1 Fn - 1 - Fn
2 = (-1)^n

Suppose n is even,
Then Fn + 1 Fn - 1 - Fn

2 = 1;
So, Fn + 1 (cFn – 1)- Fn(-cFn) = c

Thus, x’ = c Fn-1, y’ = -c Fn is a particular 
solution of the LDE Fn + 1x + Fny = c.

Suppose n is odd,
Then Fn + 1 Fn - 1 - Fn

2 = -1 which implies
Fn + 1(-1*Fn - 1) + Fn

2 = 1
So, Fn + 1(-cFn - 1) +Fn(c Fn) = c.
Thus x’ = -c Fn-1, y’ = cFn is a particular solution of 
the LDE Fn + 1x + Fny = c

For example, consider the LDE 34x + 21y = 17. 
Since F9F7 – F8

2 = 34*13 - 212 = (-1)8 and c = 17
It follows that x’ = cF7 = 17*13 = 221, y’ = -cF8 = 
-17*21= -357 is a particular solution.

So the general solution is x = x’ + bt = 221 +21t, y 
= y’ – at = 357 – 34t
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