
Bensimon 1

Minkowski’s Convex Body Theorem

by Isabelle Bensimon

Project for MA341: Appreciation of Number Theory

Boston University, Summer Term 2009

Instructor: Kalin Kostadinov



Bensimon 2

Minkowski’s Convex Body Theorem

In 1891, mathematician Hermann Minkowski (1864-1909) gave a lecture in Halle, 

Germany, where he introduced the lattice as the collection of points with integer 

coordinates in the coordinate system with perpendicular axes. This talk indicated his shift 

in focus from solving problems in Number Theory with geometric intuition towards 

“Geometrie der Zahlen,” or, “the Geometry of Numbers.”  He defined this term to mean 

geometrical investigations of the lattice and associated bodies. 

In an 1893 paper, Minkowski presents a theorem which defines parameters for the 

volume of a certain body in order for that body to contain a lattice point in the rectangular 

Euclidean coordinate system. He begins his paper, “In Number Theory, as in all other 

fields of analysis, the inspiration often comes from geometrical considerations even 

though at the end maybe only the analytical verification is shown.” Indeed, from 

Minkowski’s “geometrical considerations” a generation of new mathematical knowledge 

was derived. In essence, Minkowski laid the foundation for the modern theory of 

convexity. 

Minkowski’s Convex Body Theorem for n=2:

Let L be a lattice in ℜ2, where L= {mv1 + nv2 | m, n∈Ζ} and v1, v2 are independent 

vectors. Let  be the area of a fundamental parallelogram for L. Let Ω be a convex body 

with Area(Ω) > 4 . Then Ω contains points of the lattice L other than the origin.

Before proving his extraordinary theorem, however, it is necessary to define 

certain terms. A subset Ω ⊂ ℜn is convex if for all pairs of points P, Q∈ Ω, the entire line 

segment PQ is contained in Ω, where PQ= {(1 − t)P + tQ | 0 ≤ t ≤ 1}. Furthermore, a 
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subset Ω ⊂ ℜn  is centrally symmetric if for every point Q∈ℜn contained in Ω, -Q∈ Ω, 

where -Q is the reflection of Q through the origin. 

A convex body is a nonempty, bounded, centrally symmetric convex set. For 

example:
 

                         Figure 1                                                    Figure 2

The following is not a convex body:

    Figure 3: Not centrally symmetric      Figure 4: The entire line segment PQ∉ Ω      

Finally, we are ready to state, and offer one proof of, Minkowski’s theorem. 

(-1,-1)

(1,1)
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Proof of Minkowski’s Convex Body Theorem for n=2:

Since Ω is a bounded region of the plane, and since the 2L lattice defines a “tiling” 

of the plane using non-overlapping parallelograms, then Ω can be split up into a finite set 

of non-overlapping regions (Ω1, Ω2, Ω3,…, Ωn) that are each defined by the 2L 

parallelogram which they overlap, and that together make up Ω.  Under a (mod 2L) 

mapping, we are translating these n regions into F, the fundamental parallelogram of the 

2L lattice, without in any way changing their size or shape. Therefore the n translated 

regions (ΩF1, ΩF2, ΩF3,…, ΩFn) each have the same area as the original untranslated 

regions (i.e. Area(Ω1)=Area(ΩF1), etc).  

As a result, the sum of the areas of ΩF1, ΩF2,…, ΩFn is equal to the sum of the 

areas of Ω1, Ω2,…, Ωn which itself equals the area of Ω. 

We know that F is tiled by exactly 4 parallelograms of the L lattice and therefore 

has area 4 . Since Area(Ω) > 4 , Area(Ω) > 2,  where 2 is the area of the fundamental 

parallelogram for 2L. Since ΩF1, ΩF2,…, ΩFn all fit within F but together have greater 

area than F, then at least two of them must overlap, arbitrarily ΩFi and ΩFj.  Since this 

overlap has non-zero area, it contains an infinite set of points, and each point in that 

overlap is the common “(mod 2L)” mapping of one point in Ωi and one point in Ωj. We 

know those two points to be distinct points in Ω since Ω1, Ω2, Ω3,…, Ωn are non-

overlapping.

Therefore, for distinct points p1, p2 ∈Ω, p1 ≡ p2 (mod 2L). 
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     Ω (mod 2L)     

                          L                         2L                

Pictured above, the fundamental parallelogram is shaded in red for both L and 2L. 

Clearly, 4 = 2 where 2 is the area of the fundamental parallelogram for 2L. 

If p1 ≡ p2 (mod 2L), algebraically, this means that if p1 = a1v1 + b1v2 and p2=a2v1 + 

b2v2, then a1 ≡ a2 (mod 2) and b1 ≡ b2 (mod 2). Thus, (a1 - a2) ≡ 0 (mod 2) and (b1 - b2) ≡ 0 

(mod 2), and therefore are both even. This means that the point (p1 - p2), which is equal to 

(a1 - a2)v1+ (b1 - b2)v2 is an element of the 2L lattice, and is non-zero since p1 and p2 are 

distinct. In other words, there exists a point p3 in the lattice L such that p1 - p2 = 2p3. 

Since a convex body is centrally symmetric, if p2 ∈ Ω, then –p2 ∈ Ω. In addition, 

since for points p1, -p2, the entire line segment p1(-p2) ∈ Ω, for t = ½, the point                 q 

= (1-½)p1 + (½)(-p2) = ½p1 - ½p2 = (p1-p2)/2. Since p1 and p2 are distinct, q ≠ 0.

Finally, as p1 ≡ p2 (mod 2L), p1 - p2 ∈2L, and thus q ∈ L!

The convex body theorem has a number of implications for Number Theory. For 

one, Minkowski’s theorem introduces an alternative way to prove that primes of the form 
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p=4k+1 can be written as the sums of two squares.

Theorem: Every prime p ≡ 1 (mod 4) is a sum of two squares. 

Proof:

Choose a ∈ Ζ such that a2 ≡ -1 (mod p) for p-prime. -1 is a quadratic residue 

modulo p iff p ≡ 1 (mod 4)1. Let L be a lattice in ℜ2, where L = {mv1 + nv2 | m, n ∈ Ζ} 

and v1= (a,1) and v2= (p,0). The area of a fundamental parallelogram of L is given by , 

which has a base of length p and height of length 1. Therefore = base x height = p. 

Let (x, y) = mv1 +nv2 for some m, n ∈ Ζ, i.e. (x, y) is a point on our lattice L. From 

our definition of the vectors v1 and v2, x = ma + p and y = m, and thus                             x2 

+ y2 = (ma + p)2 + m2 = m2a2 + 2map + p2 + m2 = m2(a2+1) + 2map + p2. 2map and p2 are 

both congruent to 0 modulo p, therefore m2(a2+1) + 2map + p2 ≡ m2(a2+1) (mod p). By 

our choice of a, a2 + 1 ≡ 0 (mod p), and thus m2(a2 + 1) ≡ 0 (mod p). 

Let Ω be a circle centrally symmetric about the origin with radius (2p)½.  

Ω is given by {(x, y) ∈ℜ| x2 + y2 < 2p}. The area of Ω is given by 2πp, which is greater 

than 4p = 4 . Therefore, by Minkowski’s theorem Ω contains an lattice, or integral, point 

other than the origin, arbitrarily given by (j, b). As (j, b) is a lattice point, j2 + b2 ≡ 0 (mod 

p). Also as (j, b) ∈ Ω \ (0,0), j2 + b2 < 2p. Since at least one of a and b is nonzero, j2+b2 is 

greater than 0. As 0 < j2 + b2 < 2p, for j2 +b2 to be congruent to 0 modulo p,        j2 + b2 

must be equal to p. Therefore every prime p ≡ 1 (mod 4) is a sum of two squares! 

In order to prove Minkowski’s theorem for n-dimensions, it is necessary to present 

certain properties. 

1 Proof omitted. 
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Properties of Dilates:

• Ω is nonempty iff rΩ is nonempty.

• Ω is bounded iff rΩ is bounded.

• Ω is convex iff rΩ is convex.

• Ω is centrally symmetric iff rΩ is centrally symmetric.

Therefore if Ω ⊂ ℜn is a convex body of volume V, then for r∈+ℜ, rΩ is a convex 

body of volume r n Vol(Ω). Here, we define Vol(rΩ)= r n Vol(Ω). 

Minkowski’s Convex Body Theorem: Suppose Ω ⊂ ℜn is a convex body with Vol(Ω) > 

2n . Then there exist integers x1,…,xn, not all zero, such that P=(x1,…,xn)∈Ω. 

Proof of Minkowski’s Convex Body Theorem:

Since  ½∈+ℜ, for a convex body Ω, ½Ω is also a convex body. Therefore the 

Vol(½Ω)=(½)nVol(Ω). As Vol(Ω)>2n , Vol(½Ω) >1.

Ω contains a non-zero integral point P0∈Ζn iff ½Ω contains a non-zero point Q0 such that 

2Q0∈Ζn. Therefore to prove that a convex body with Vol(Ω) > 2n contains a non-zero 

integral point, I will show that Vol(Ω) >1 contains a non-zero half-integral point (a point 

Q0 such that 2Q0∈Ζn):

For Vol(Ω) >1, if Ω contains P and Q, then -Q∈Ω as Ω is centrally symmetric. 

Since Ω is convex, the entire line segment P(-Q) is contained in Ω. For t=½, this includes 

the point R=½P + ½(-Q)= ½P-½Q. 

For a positive integer r, let L(r) be the number of 1/r lattice points contained in Ω. 

In other words, points P such that rP∈Ζn .
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As limr→∞    L(r)        = 1, by Gauss’ Circle Problem, limr→∞   L(r) = Vol(Ω). 
    r n Vol(Ω)            r n

Since the Vol(Ω) >1, L(r) > r n as r increases. As Ζ/rΖn = r n< L(r), by the 

pigeonhole principle there exists unique integral points P= (x1,…,xn) and Q=(y1,…,yn) 

such that (1/r)P and (1/r)Q are contained in Ω and xi ≡ yi (mod r) for all i=1,…,n. 

For these points, R=½(1/r)P - ½(1/r)Q = ½ ((x1- y1)/r,…, (xn- yn)/r) = ½((P-Q)/r)). 

As (x1- y1)/r,…, (xn- yn)/r∈Ζn, (P-Q)/r)∈Ζn .

Therefore, R=½((P-Q)/r)) is a half-integral point lying in Ω. Therefore a convex 

body with Vol(Ω) > 2n contains a non-zero integral point.ÿ
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