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Introduction  :  

Polygonal numbers are number representing dots that are arranged into a geometric figure. 

Starting from a common point and augmenting outwards, the number of dots utilized increases in 

successive polygons.  As the size of the figure increases, the number of dots used to construct it 

grows in a common pattern.  The most common types of polygonal numbers take the form of 

triangles and squares because of their basic geometry. Figure 1 illustrates examples of the first 

four polygonal numbers: the triangle, square, pentagon, and hexagon. 

Figure 1: 

http://www.trottermath.net/numthry/polynos.html

As seen in the diagram, the geometric figures are formed by augmenting arrays of dots. 

The progression of the polygons is illustrated with its initial point and successive polygons 

grown outwards.  The basis of polygonal numbers is to view all shapes and sizes of polygons as 

numerical values.

History  :  

The concept of polygonal numbers was first defined by the Greek mathematician Hypsicles 

in the year 170 BC (Heath 126).  Diophantus credits Hypsicles as being the author of the 

polygonal numbers and is said to have came to the conclusion that the nth a-gon is calculated by 

the formula 1/2*n*[2 + (n - 1)(a - 2)].  He used this formula to determine the number of elements 

in the nth term of a polygon with a sides. 

http://www.trottermath.net/numthry/polynos.html


  Polygonal Numbers 3

Before Hypsicles was acclaimed for defining polygonal numbers, there was evidence that 

previous Greek mathematicians used such figurate numbers to create their own theories.  One 

example of the use of polygonal numbers even before Hypsicles is in Pythagorean’s theorem.  In 

his studies, Pythagoras established his famous theorem by discovering that the area of a square 

with the same length of a side of a right-triangle, plus the area of a square with the same length 

of the other adjacent side of a right-triangle, is equal to the area of a square with the same length 

of the hypotenuse of the same triangle (Heath and Diophantus 80).  Thus he came up with the 

formula that a2 + b2 = c2, where a and b are the sides of a triangle and c is the hypotenuse.  By 

visualizing geometric shapes as numbers, he discovered one of the most utilized properties of a 

triangle vastly used in today’s geometry.

Other important mathematicians who studied polygonal numbers included Theon of 

Smyrna, and Nicomachus. In their own ways, they determined how to obtain polygonal numbers 

of from the combination of other polygonal numbers of lower degree (Heath 126). 

A modern use of the polygonal numbers is found in Pascal’s triangle.  It is an application 

that displays the coefficients that arise in binomial expansions in the form of a triangle.  Pascal’s 

triangle has clear roots in the triangular numbers in the way that the numbers are geometrically 

arranged.  The only modification that it implements is that numbers are represented as the points 

in the arrays constructing the triangle instead of dots.  The basic display of the triangle has the 

rows staggered to have it in the shape of a pyramid as seen in the picture below.
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http://daugerresearch.com/vault/parallelpascalstriangle.shtml

The triangle is broken down into rows starting with the number one in row one. The 

elements in the rows grow in increments of one with two elements in the second row, three 

elements in the third row and so forth.  Each number is generated by adding the two numbers 

directly above it.  Each element in the triangle is indexed by nCr, where n is the row starting with 

the number zero and r is the element in the row chosen, also starting with the number zero.  The 

purpose of the triangle is to determine the coefficients of a binomial expression such as (x + y)2. 

This expression is expanded out to x2 + 2xy + y2.  It is clear that the coefficients for the equation 

are one, two, and one which is exactly the third row of Pascal’s triangle.  

Pascal’s triangle has been carefully studied since it’s been created.  One great discovery 

made from the triangle is the Fibonacci numbers.  The Fibonacci numbers are the sequence of 

numbers where the next element of the sequence is the sum of the previous two elements starting 

from the number one.  This sequence can be obtained by adding the shallow diagonals viewed in 

the picture below:

http://mathworld.wolfram.com/PascalsTriangle.html

http://mathworld.wolfram.com/PascalsTriangle.html
http://daugerresearch.com/vault/parallelpascalstriangle.shtml
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More importantly, the triangular numbers can be seen in the triangle as well.  The diagonal 

that connects the first element in row three and the third element in row five is the exact series of 

numbers that make up the successive triangular numbers. The third diagonal consists of 1, 3, 6, 

10, 15 which so happens to be the first five triangular numbers.  This is the case because the 

diagonal can also be represented as the series of 2C2, 3C2, 4C2, etc.  

Fermat was another great mathematician that developed theories in the world of 

polygonal numbers.  He proposed that all whole numbers could be represented as the sum of at 

three triangular numbers or less.  The sequence of triangular numbers can bee seen in the chart 

and goes from 1, 3, 6, 10, etc.  An example of Fermat’s theorem is the number 100 being 

represented with three triangular numbers.

(1) 100 = 91 + 6 +3 = T13 + T3 + T2

(2) 100 = 45 + 55 = T10 + T9

As seen in the example above, the number 100 can be broken down in many different 

ways.  With the use of triangular numbers, 100 can be represented as the sum of three triangular 

numbers seen in the first example or even two triangular numbers, as seen in the second 

example.

Theory  :   

As mentioned previously, the basic formula for deriving the nth a-gonal number is: 

pa(n) = n*  [  2   + (  n - 1  )(  a   - 2)]  (1) 
       2

This implies that the formula for a triangular number is:

p3(n) = n  *(  n+1  )  , (2)
       2
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and the first 5 triangular numbers are: 

p3(1) = 1
p3(2) = 3
p3(3) = 6
p3(4) = 10
p3(5) = 15

These numbers can be represented as figures, by starting at one point and augmenting out, 

as shown in figure 2.  

          

Figure 2: the figure illustrates the growth of a triangular number. 

      From left to right: n = 2, n = 3, n = 4. 

Note that the total number of dots in each triangle, starting from the first row down to the 

nth, equals p3(n). This general pattern holds for all pa(n). Polygonal numbers can also be 

described as sets of n terms rather than diagrams. Let Sa = {the first n a-gonal numbers}, so 

|Sa| = n, and the nth term of Sa is pa(n).  

Derivation of the general formula. 

Polygonal numbers can be expressed as a sequence, where each element in the sequence is 

the number of dots to be added to the polygon as it is augmented.  Take the triangular numbers, 

for example, starting with a single dot when n = 1. Next, two dots are added, then three, etc, as 

illustrated in figure 3. 
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   n =1   n =2  n = 3   n = 4

Figure 3: Augmentation of triangular numbers, from left to right
          

The red dots represent the elements of the sequence. This means that the total number of dots, 

p3(n), is the sum of the elements: 

     n
 p3(n) = ∑ i = 1 + 2 + 3 + ... + (n - 1) + n  = n   (  n + 1  )  

                   i = 1                         2

Now, the same analysis can be made for square numbers: there is a single dot when n = 1. Next, 

three dots are added to form a square. The square augments as the length of each side increases 

by one dot as shown in figure 3:
 

          n = 1         n = 2       n = 3         n = 4 

Figure 3: Augmentation of square numbers, from left to right. 

Notice how the length of each side of the squares increases by one dot as the value of n 

increases. The red dots represent the elements of the sequence. Therefore, the value of p4(n) is: 
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         n
 p4(n) = ∑ 2*i - 1 = 1 + 3 + 5 + ... + (2*(n - 1) - 1) + (2*n - 1) = n2 

                   i = 1

Note that the sequences for triangular numbers (a = 3), and square numbers (a = 4) are 

represented by n, and 2*n - 1, respectively. The triangular numbers can be rewritten as:

              (a - 2)*n - (a - 3), 

knowing that a = 3.

(3 - 2)*n - (3 - 3)
      = n

Similarly, when a = 4:
(a - 2)*n - (a - 3) 

      = (4 - 2)*n - (4 - 3)
      = 2*n - 1, 

which, in fact, is the formula for the square numbers. 

Therefore, in the general case: 
     n

 pa(n) = ∑ (a - 2)*i - (a - 3) 
                   i = 1

     n n
 <=>    ∑ (a - 2)*i -   ∑(a - 3)

                   i = 1        i = 1
                n         n

<=>   (a - 2) *∑i -  (a - 3) ∑ 1
                              i = 1      i = 1

<=>   (a - 2)*n*(n + 1) - (a - 3)*n
2

<=> (a - 2)*(n  2   + n)   - a*n - 3*n
       2 

<=>  a*n  2   + a*n - 2*n  2   + 2*n   - a*n - 3*n  
                   2

<=>  n*(2 + (n - 1)*(a - 2)) = pa(n)
         2
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Analysis: 
Taking a closer look at polygonal numbers reveals some interesting characteristics and patterns 

within them:   

Triangular numbers are in all polygonal numbers.

Triangular numbers are the basis for other polygonal numbers of higher degree. 

Consider the formula for pa(n):

pa(n) = n*  (  2 +   (  n - 1  )*(  a - 2  ))   , 
    2

which can be rewritten as:

pa(n) = n + n*  (  n - 1  )  *(a - 2)) . (4)
 2

Note that n*  (  n - 1  )   = p3(n - 1), so (4) is the same as:
         2

pa(n) = n + p3(n-1)*(a - 2). (5)

Table 1 shows the first 9 triangular to decagonal numbers. Notice that the numbers in each 
column increase by the same number. It is no coincidence that the elements of the nth column 
increase by increments of p3(n - 1). 

Table 1:

NAME n=1 2 3 4 5 6 7 8 9
a = 3 1 3 6 10 15 21 28 36 45
a = 4 1 4 9 16 25 36 49 64 81
a = 5 1 5 12 22 35 51 70 92 117
a = 6 1 6 15 28 45 66 91 120 153
a = 7 1 7 18 34 55 81 112 148 189
a = 8 1 8 21 40 65 96 133 176 225
a = 9 1 9 24 46 75 111 154 204 261
a = 10 1 10 27 52 85 126 165 232 297

By expanding and rearranging formula (4):



10 Daniela Betancourt and Timothy Park

pa(n) = n + n*(n - 1)*(a - 2)) 
 2

         = 2*n + a*n  2   - 2*n  2   - a*n +2*n  
2

         = (  5*n - n  )   + a*n  2   -   (  3*n  2   - n  2  ) -   a*n  
   2  

              = (  5*n + a*n  2   - 3*n  2   - a*n  )   + (  n  2   - n  )   

2   2

     = pa - 1(n) + p3(n - 1)

Indeed, pa(n) -  pa - 1(n) = p3(n - 1). 

If all polygonal numbers are related to triangular numbers, under what circumstances are 

they equal to each other? One trivial answer to this question is that all polygonal numbers appear 

at least twice. When n = 1, all a-gonal numbers equal a. This is simply because of the fact that 

when n = 1 the graph for that polygon is it’s simplest one, with each side consisting of only one 

edge. However, since the sequence of polygonal numbers is infinite, any a-gonal number 

corresponding to n >1 will equal the ath a-gonal number when n = 1. 

Conclusion:
Polygonal numbers has been meticulously studied since their very beginnings in ancient 

Greece.  Numerous discoveries stemmed from these peculiar numbers and can be seen in the 

basic fundamental groundwork of number theory today.  With finding such as Pascal’s triangle 

and Fermat’s triangular number theorem, polygonal numbers has become a popular field of 

research for mathematicians. 
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