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  Workshop 1-   Building on the Axioms. The First Proofs 
The goal of this workshop was to organize our experience with the common integers and their proper-

ties in a  concise manner. We started up with a system of axioms for the Ring of Rational Integers,

and discussed why one needs such a system and what are its desirable properties.

Then we explored some immediate consequences form these axioms, and in this process we wrote our 

first simple proofs.

Here are the (very-slightly edited, there are inaccuracies reflecting the student level of understanding of 
some of the concepts in the workshop)  comments of some of  the students about the activity:

Daniela:

Today's workshop, Axiomatic Description of the Integers, involved the use of basic axioms on very 
simple proofs. Basic axioms include operations such as the associative and commutative properties of 
addition and multiplication, the distributive law, and the additive inverse, to name a few.  It is 
important to note that in this case we are studying the integers in Z, as some of these axioms may vary 
depending on the range of numbers. For example, the Well Ordering Principle can't apply to rational 
numbers. Since there are so many it is nearly impossible to determine which one is really the smallest 
because they can keep decreasing to a certain limit infinitely. Because of this, it is important to keep 
track of what set you are really talking about in a proof. 
Using these axioms, we came up with a proof for a very simple equation: 0*0=0. It seems like a very 
simple, obvious proof, but it did take several steps using the most basic algebraic operations to show 
that this is actually true. After this proof we defined several terms that could have been useful in the 
proof. We said that a > b when a + b' ∈ N (from axiom 4 which says that given a ∈ Z, ∃ a' ∈ Z such 
that a + a' = 0). An element, a is called positive if a > 0, and it is called negative if a' is positive. 
Through this we claimed that if a and b are negative, then a + b is negative too, and a*b is positive. The 
proof for these claims was not fully completed.  

********************************************************************************

Jae:

Our first workshop was mainly divided into two categories: Axioms and Proofs.

We began with a worksheet on axioms and discussed in great detail of 
the concepts of axioms. Some questions that were discussed:
1. (regarding axiom #10) What about repeats in a set?
        {1,2,3} is a set with three elements, however {1,2,2,3,3,3} is 
still a set with three elements. Repeats and the ordering of numbers do 
not matter.



2. What are axioms good for?
        Axioms are the starting points and properties for proofs.

3. What makes a good system of axioms?
        (a) with a good system of axioms you are able to distinguish between two 
different objects.
        (b) they must be true, universal, and you don't want them to be 
contradictory.
        (c) Axioms must be strong, and you gave an example with "twin 
primes" we have yet to find a strong axiom to prove this idea.

It is interesting to learn what are the basic properties that allow us 
to prove more complex problems.

PROOFS, concepts of PROOFS:
We did many examples and studied the definition of a>b, a>0 and an 
element that is negative.
We tried to prove in great detail that (a)(0)=0 and (0)(0)=0
by using the properties and concepts of axioms that we discussed before 
we were able to solve the proof (0)(0)=0.

To a person on the streets, trying to prove (0)(0)=0 may sound 
ridiculous and absurd; however it was very surprising to see how hard 
this proof really is. Since little these basic ideas are just assumed, 
however once sitting down to prove these ideas is a whole new domain. 
It makes you question and wonder about basic equations, for example: 
How do I know and prove that 1+1 is really 2.
Answer: I learned that, well, 2=1+1 is infact a definition, and does not require proof.

********************************************************************************

Lorna:

In Tuesday's lecture, on May 26, 2009 we discussed Axiomatic 
descriptions of Integers. We looked at the different axioms given to us 
but also discussed what an axiom is and tried to construct some of our 
own. First we discussed what a set is and when a set is similar to 
another, as in for example {1, 2,3} is similar to {1,2,2,3,3,3} and 
{3,2,1}.
Later on we looked at all the axioms given and singled axiom 10 as one 
of their most important axioms because it is axiom 10 that 
differentaites this set of axioms as a property of integers rather than 
rational numbers.
We pointed out four important qualities that defined what an axiom is:
1. an axiom has to distinguish between different objects
2. an axiom has to be as simple as possible(no redundancy)
3. an axiom has to be consistent(it should always work)
4. axioms cannot be contradictory(we should not be able to prove a 



statement and its opposite in the same set of axioms.
After this we went on to explain some of the proofs in the axioms and 
especially concentrated on problem solving skills. We tried to make our 
own proofs like trying to prove that a*0 = 0 using the axioms given to 
us and 0*0 = 0

********************************************************************************

Fred:

In this workshop we went over the axiomatic description of the integers. Additionally, we attempted to 
write two proofs based on these axioms. The first proof was demonstrating that a * 0 = 0. The second 
proof was a demonstration that the product of two negative numbers is positive. Both of these proofs 
were left unfinished. This workshop followed studying the properties of congruencies, as well as 
systems of linear congruencies.

********************************************************************************

Tim:

The workshop about the axiomatic description of the integers was very
interesting. It really gave me a new perspective to look at how the
theory behind simple equations came about. I never knew that something
so simple could be so complex. The workshop made me look back to simple
equations that are learned as early as elementary school, and see how the
use of axioms assembled them. I was surprised to see how many axioms
were created only by only using the addition and multiplication
function. Even though the axioms listed are extremely elementary in
difficulty, the combination of the axioms listed is very powerful.
Properties of axioms were also discussed in class. We came to the
conclusion that it is necessary for a list of axioms to be relatively
small, to be exclusive to the set being discussed, and for a set of
axioms not have contradicting claims.

********************************************************************************
Spencer:

In our workshop on Tuesday we discussed axioms and how they relate to 
mathematical proof. Axioms are the most basic "principles" of any 
mathematical class or theory. They are the statements which can appear 
without any previous justification in a formal proof. For example, we 
might choose "A = A" as an axiom since it allows us to draw certain 
conclusions from statements involving the sign "=."



But how do mathematicians choose axioms? Euclid used statements that he 
considered to be "self-evident" as axioms (for example, that there 
exists a unique line through any two distinct points) to create what we 
now know as Euclidean geometry; over a century later, mathematicians 
discovered the so-called "non-Euclidean" geometries by simply throwing 
out Euclid's seemingly self-evident Parallel Postulate. This 
demonstrates that every theory can be identified and distinguished by 
its set of axioms. For example, by axiomatically describing the set N 
of integers, we can formally distinguish this set from the sets Q and R 
of rationals or reals: One axiom of N is that it is well-ordered (ie, 
every subset of N contains a least element), whereas any open interval 
of R or Q contains an infinite number of elements and no least element.

A "good" set of axioms is as small as possible by containing no 
redundancies. (An axiom is called redundant if it can be proved from 
the other axioms.) It should also be consistent (provide no possible 
proof of a contradiction), and ideally it should be complete. A set of 
axioms is called complete if there exists either a proof or 
counterexample for any statement about the space the axioms describe.

Finally, we practiced using axioms in a rigorous proof by attempting to 
provide proofs for basic, obvious propositions such as "[a x 0 = 0] for 
any integer a" and "The additive inverse 0 zero is unique." This ended 
up being a tricky task, since we are not allowed to assume anything 
except the axioms. Every statement in the proof must itself be proved 
from the axioms. In this way a proof can be conceived as a chain of 
lemmas connecting the axioms and conclusion.

********************************************************************************

Isabelle:
 
During the workshop on Tuesday, we were introduced to the axioms that 
define the Ring of Rational Integers, the set Z. Axioms are formal 
logical expressions used to build mathematical theories about the 
system they define, in this case, Z. Some axioms may be used to define 
multiple systems. For example, a+b=b+a holds true for all a and b 
element of both systems Z and the real numbers, R. However, some axioms 
describe what is unique about a particular system. For example, the 
well-ordered principle, says that every non-empty subset of N, the 
natural numbers, has a least element. This does not hold for all 
subsets of R. For example, the open set (0,1) has no least element. 
Thus while systems that are elements of other systems are subject to 
the same axioms as the larger set(eg. Z element of R), there may be 
axioms that can define a subset but not the larger set. It is also 
important that no axioms within a set are contradictory.

After the introduction to axioms, we began to use them in order to 



prove other theories about the system Z. For instance, in order to 
prove that 0*0=0, we first noted by 0'=0+0' by axiom 3. Then we said 
that 0*0=(0+0')*0=0*0 + 0'*0 by axiom 4 and axiom 7. From here we were 
able to show that, defining x as 0*0, x=0.

********************************************************************************

Susan:

Kalin handed out the list of axioms for the set of integers. Looking 
at axioms was a new thing for me, I had heard the word before, but no 
professor had ever taken the time to me explain what they were. After 
reading through a few of the axioms aloud and all of them by ourselves, 
we began compiling a set of criteria for a list of axioms. These 
criteria included ? non-redundant, distinguish working set from all 
other sets, not contradictory, and strong enough to prove or disprove 
anything. One of the reasons mathematics is so addictive is that many 
questions still remain unresolved. Does this mean our set of axioms is 
not strong enough? Do we need an additional axiom for the integers to 
solve Fermat?s Last Theorem?

We then went on to begin to prove simple, seemingly obvious statements 
using the axioms. At first, this was a bit of a challenge. In order to 
think about solving a*0=0 we needed to simplify it to 0*0=0, which we 
could prove together with a lot of guidance from Kalin. During this 
proof, Kalin demonstrated that in order to prove something, sometimes 
you need to work backwards and forwards and end up meeting in the 
middle. I had never thought about proofing this way. Hopefully this 
workshop will come in handy when I begin my semester project, a formal 
proof.

********************************************************************************

Samantha: 

In today’s workshop we discussed some of the most basic mathematical statements, which 
we often believe to be true and use without hesitation.   A “good” list of axioms show no redundancy, 
are universal, distinguish between different groups of numbers, are strong enough to prove or disprove 
a claim, and do not contradict one another. During class we had the opportunity to study Axioms of the 
Integers and attempt to prove some of the most fundamental mathematical statements.  A proof is 
formalized to some degree and builds a chain between a plausible argument and conclusion. 

Example: Prove that 0 = 0`
1. There exists 0` in the set of integers such that 0 + 0` = 0. By axiom 4, very element a in the set 

of integers has an additive inverse: Given that a is in the set of integers, there is an element a` in 
the set of integers such that a + a` = 0.

2. 0 + 0` = 0`. By axiom 3, the set of integers contains a special element, denoted with the symbol 
0, and called zero, which is neutral for the addition operation:     a + 0 = a for all elements a in 



the set of integers. 
3. Therefore we can conclude that 0 = 0`. 

As we discover more axioms and use these axioms to prove certain statements we are increasing the 
claims we can use for future proves.  Axioms can also be used to construct definitions. 

Definition: We say that a > b, when the a + b` is an element of the natural numbers.  
i.e. a = -3, b = -5, b`= 5, a + b` = 2.
i.e. a = 7, b = 5, b` = -5, a + b` = 2.

An element a in the set of integers is called positive if a > 0.
An element a in the set of integers is called negative is a` is positive. 

Once again, the definitions continue to build off one another and are rooted in previous axioms (for 
instance the Trichotomy principle). I believe that proofs are essential to truly understanding any type of 
mathematics.  By proving these ‘simple’ concepts we will increase our understanding and enhance our 
further learning. 

********************************************************************************

Sarah:

In the workshop on Tuesday we discussed axioms that applied to the
integers.  Many of the axioms were obvious, simple properties we learned
in middle school such as associativity, additive inverses,
distributivity, and commutativity.  We learned that the Well Ordering
Principle was on the list to exclude the real numbers.  The only
operations we were given to work with were addition and multiplication.
 Some very important characteristics that all axioms must follow are
consistency and non-contradictory and strong enough that we may use them
to prove or disprove a claim.

With the axioms, we were then given the task to prove simple, common
knowledge properties.  This task turned out to be quite difficult
however.  Trying to prove that a*0=0 turned out to be quite challenging.
 So as we learned in our first lesson when given a difficult problem,
break it down to something simpler.  So we tried proving 0*0=0.  By using
the axioms of additive inverses, the neutralness of 0 in addition,
distribution, associativity, and commutativity we were able to conquer
the seemingly easy task of proving 0*0=0.  We concluded by defining what
it is to be negative and positive.  a>b when a+b1 is an element of the
natural numbers.  a in the integers is positive if a>0 and a is negative
if a1 is positive.
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Workshop 1-  Distilling Axioms, Proving Consequences
The goal of this workshop was to organize our experience with the common integers and their proper-

ties in a  concise manner. We set up to find which properties fully describe the integers, and separate 

them from the other numerical system. 

Then we explored some immediate consequences form these axioms, and in this process we wrote our 

first simple proofs.

Here are the (non-edited)  comments of some of  the students about the activity:

Allan:

Yesterday, at our workshop, we discussed in great detail, the definition of the set of Z. This set contains 
all the integers {...,-3, -2, -1, 0, 1, 2, 3, ...} .
To properly define Z, we say:
  For every integer a in Z, one of the following conditions is true:
      a) The integer a is equal to zero.
      b) The integer a is in the set of natural numbers, N
      c) The negative of a, (-a), is in the set of natural numbers, N.
There are several properties of integers in Z.
1) They have the operations of addition and multiplication, both of which can generate new members 
of the set of Z.
2) They have additive and multiplicative inverses and identities, which means that the operation can be 
reversed and neutralized.
3) Every integer can be represented as a product of unique primes.
4) The operations of addition and multiplication are commutative, which means, the order in which it is 
performed does not matter.
5) The operations of addition and multiplication are together distributive,  a * (b + c) = a*b + a*c
6) There are no zero divisors, which means that when a*b = 0, either a = 0  OR b = 0.
7) One integer in Z can be compared to another integer in Z to determine which is greater. 
So, if a > b, then a - b is in the set of natural numbers, N.
Additionally, I have read online that the set Z is closed for the operations of addition and 
multiplication. This means that a+b is inside the set Z, and that a*b is inside the set Z.
.

Also, I have read online that if one applies the following function to Z, we can show that the number of 
elements in Z is equal to the number of elements in N. This shows the cardinality of the two sets:
f(x) = 2x + 1, if x >= 0     && |x|, if x < 0

********************************************************************************



Andrew:

During the workshop on 27 May 2008 we attempted to describe the integers. We were able to arrive at 
approximately 12 properties of the integers. These included the existence of the addition and 
multiplication operators as well as an additive identity and a multiplicative identity. I found that the 
most interesting property we derived was that for every a contained in the set of integers, the exists an 
integer b such that b > a.  
.

We also spent time trying to describe the natural numbers. I found that the most important property of 
these was the property which defined 'greater than': we say that a > b if and only if a-b exists in the 
natural number set. Overall I found that the concepts examined in this workshop set the ground work 
for many interesting results to come later.

**********************************************************************************

Brendan:

In Tuesday's workshop we discussed integers, we listed properties and axioms for the set of integers, 
and we proved some of these axioms.
Here is a summary of the list we created:
There exists operations “+” and  “.” on Z (closed under addition and multiplication).
Both of these operations are associative and commutative.
There's an additive identity (0) and a multiplicative identity (1).
The natural numbers is a subset of Z.
Every integer can be uniquely represented as a product of primes.
There's an additive inverse. We proved the uniqueness of the additive inverse using properties of 
associativity and commutativity.
There are no zero divisors. 
And for every a in Z exactly one of the following is true: 1) a=0, 2) a is in N, or 3) -a is in N.
We then proved that  square root of 2  is not in Z.
We created this list of axioms in this workshop in order to better our understanding of integers and so 
that we may use these axioms to prove other theorems and solve other problems involving integers.  

**********************************************************************************

Cicek:

On Tuesday's workshop, we have discussed properties of integers and worked on related proofs. 
We  have  reminded  ourselves  the  algebraic  properties  first,  such  as  closure,  associativity, 
commutativity, identity and inverse elements, distributivity, zero divisors, etc.
This workshop impressed me in a way that the things we knew about integers were a lot deeper than 
I've thought.  I found it interesting that such simple cases like uniqueness of an additive inverse would 
be a proof to enjoy.  After attending this workshop and solved related questions from the homework, I 
have realized that proofs require a lot more thinking than I have expected.
Overall, I think this was a very helpful workshop in terms of expanding my view on numbers.



*********************************************************************************

David:

In workshop on Tuesday we characterized the integers by listing their properties; specifically, the ring 
axioms and the "trichotomy principle," i.e. that each integer is either zero, a natural number, or its 
inverse is a natural number. We then used these axioms to prove monotonicity for the natural number, 
i.e. given natural numbers a,b, then ab>=max(a,b), and that 1/2 is not an integer. The trichotomy 
principle is an important tool because it allows for the use of mathematical induction because it
gives a recursive definition for natural numbers, i.e. 1 is in N and for any a in N, a+1 is in N. This lets 
us prove general statements about the natural numbers by showing that it is true for 1 and that, if it is 
true for any arbitrary a in N, it is true for a+1. Also, the axioms we listed define the integers, so all 
other properties of integers (e.g. Unique factorization, etc) can be proven just from the axioms.

******************************************************************************

Joe:

In the workshop, we discussed the general axioms of a commutative ring  with identity.  Then we 
constructed the natural numbers by the recursion theorem.  After we had the naturals, we created the 
integers by taking the union of the naturals, the negation of each natural, and 0.  
.

That construction of the integers is the only thing that differentiates our ring from a general 
commutative ring with identity.   
.

Of course, we decided not to include 0 in the natural numbers, which is a personal pet peeve of mine, 
but I'm aware that in particular, number theory is where 0 isn't considered a natural number.  I'm more 
used to set theory, where the Von Neumann construction of the natural numbers defines 0 to be the 
empty set, 1 to be the set containing the empty set, 2 to be the set containing 0 and 1, etc.

I also thought it was weird that we referred to the recursion theorem (the definition of N as the set 
containing 1, n + 1 for any n in N, and only those elements produced by the previous two rules) as the 
principal of mathematical induction.  I suppose it's possible that the two are equivalent, but haven't 
thought about it much.  Generally we state as an axiom that at least one inductive set exists (the axiom 
of infinity), after defining PMI and the resulting inductive set.  I think it would be lot more difficult to 
prove that N is a set if we stated the recursion theorem as an axiom instead of a theorem, and then 
attempted to prove the axiom of infinity as a result.

********************************************************************************

Tina:

I also added an axiom number 11 myself and I wasn't sure if it was correct. 
The goal for this workshop was to describe the integers (set Z)
We came up with the following axioms to define the properties of an integer:
0) we could add integers and get a third one (there is an operation “+”) on Z
1) There is an additive identity (there is a neutral element with respect to addition)
2) Z is closed under multiplication
3) There exists a multiplicative identity 1



4) There are negative numbers (some of the integers are positive)
4a) 1 is in the set of natural numbers
4b)natural numbers are closed under addition and multiplication
4c)if n is in the natural set of numbers so is n+1
4d)the only numbers in N are the ones obtained from a and c
5) Every integer can be uniquely represented as a product of primes
6) For every a,b,c in Z : a(b+c)= ab+ac
7) “+” and “.” are associative
7b)              “+” and  “.” are commutative
8) There is a subtraction. For every a in Z there is an additive inverse
9) There are no zero divisors (ab=0 then either a=0 or b=0)
10) We say that if a>b if and only if a-b is in the set of natural numbers
11) any integer raised to the power of an integer is still an integer
-we mentioned that integers are a countably infinite set
-We also proved that an additive inverse of an integer is unique.
-We also proved that the square root of 2  is not an integer. It was a proof by contradiction. Our Lemma 
was that if a and b are in the natural set of numbers the a.b is bigger or equal to both a and b.
And then we went on to prove the Lemma that if ab is bigger than a then ab-a is in the natural set of 
numbers and if ab=a then b must equal one. 


