Boston University Summer I 2009 Number Theory Kalin Kostadinov

Homework No.8

due 06/15/2009

Problem A: Compute 1234567¹²³⁴ (mod 15) and 123456¹²³¹²³ (mod 77).

Problem B: In the lecture we computed that the odd primes for which -1 is a quadratic residue (QR) are the primes $p \equiv 1 \pmod{4}$, that -2 is a QR modulo the primes $p \equiv 1 \pmod{8}$ and the primes $p \equiv 3 \pmod{8}$, and that -5 is a QR modulo the primes $p \equiv 1, 3, 7, 9 \pmod{20}$. Find out for which primes are each of 4, 5, 8 and -3, respectively, quadratic residues?

Problem C: Euler theorem tells us that if we have two relatively prime natural numbers a and n, and look at the consecutive powers a^1, a^2, a^3, \cdots modulo n, we will eventually get a power of a that is congruent to 1.

Write a program, that takes as an input two positive integers, a and n, checks whether they are relatively prime, and if they are, prints the smallest exponent k, such that $a^k \equiv 1 \pmod{n}$. (2 points)

For example, given a = 2 and n = 7 your program should print k = 3, since $2^1 \equiv 2 \pmod{7}$, $2^2 \equiv 4 \pmod{7}$, $2^3 \equiv 1 \pmod{7}$. Or, given a = 3 and n = 8 it should print k = 2. Or, given a = 3 and n = 7 it should print k = 6.

Modify this program to make a second program which takes as an input a positive integer n and prints all possible exponents k such that $a^k \equiv 1 \pmod{n}$ for some $a \in \mathbb{N}$. (3 points)

For example, for n = 7 you should get k = 1, 2, 3, 6 (for values of a = 1, 6, 2, 3 respectively) and for n = 8 you should get only k = 1, 2 since $3^2 \equiv 5^2 \equiv 7^2 \equiv 1 \pmod{8}$.

Use this program and make a table with few columns, say one column for each n = 5, 7, 6, 8, 9, 10, 11, 12, 14, 18, 21, 25 and list in each column the values of k you get from the second program.

Use your data to make conjecture about the values could you see in column, i.e. write a statement like this:

Let $n \in \mathbb{N}$. If $k \in \mathbb{N}$ is such that $a^k \equiv 1 \pmod{n}$ for some $a \in \mathbb{N}$, then k has the property that _ _ _ (2 points)

Euler theorem tells us that $a^{\phi(n)} \equiv 1 \pmod{n}$ for (a, n) = 1.

The data in the table shows that for a given *n* there are a lot of values of *a* such that $a^k \equiv 1 \pmod{n}$ for some $k < \phi(n)$. In fact, there are some numbers *n* such that for all $a \in \mathbb{N}$, such that (a, n) = 1, $a^k \equiv 1 \pmod{n}$ for some *k* which is less than $\phi(n)$. The first such number is n = 8.

Make a conjecture describing which values of n fall in this category. Enlarge the table, if necessary, to test your conjecture. (3 points)

Problem D: Use Fermat's Little theorem to show that the rational fraction $\frac{1}{p}$, when represented as a decimal fraction, repeats its digits with period p-1 (or a divisor of p-1). (10 points)