Boston University Summer I 2009

Number Theory Kalin Kostadinov

Quiz IV

student: 06/09/2009

Question 1: Realign the columns and fill in the blanks:

Mathematician		Theorem		Example
0) Gauss	Ι	There exist infinitely many	A:	$2,3,5,7,\cdots$
1) Euclid	Π	$(a,b) = 1 \Rightarrow \exists x, y : ax + by = 1$	В	$13 = 2^2 + 3^2$
2) Fermat	III	$(a,n) = 1 \Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$	C:	$(5,7) = 1$ and $5 \cdot 3 + 7 \cdot (-2) = 1$
3)	IV	Let p be a prime $p \equiv _$ _	D:	$x^2 \equiv 5(modp)$ has solution if and
	the	en p is a sum of	onl	y if $x^2 \equiv p(mod5)$ has
			(p	is an arbitrary odd prime)
4) Diophantus	V	Law of Quadratic Reciprocity	È:	

4) Diophantus V Law of Quadratic Reciprocity

-V- D (Like this) 0 1 - -2- -3 - -4 - -

Question 2: We know that every natural number is the sum of at most 4 squares of natural numbers, and for some numbers 3 squares will not suffice. The number 7 is the smallest one of the latter type, which number is the second smallest?

Question 3: Give an example of a four-digit number that is not sum of two squares. Give an example of a second four digit number that is sum of two squares.

Boston University Summer I 2009 Number Theory Kalin Kostadinov

Question 4: What is the result of running the following pseudo-code: M:= 12,N:= 30; - - user input WHILE(N>0) DO - - start a cycle IF(N>M) THEN TEMP=M;M=N;N=TEMP; - - flip M and N END-IF; TEMP=M; M=N; N=TEMP-N; END-OF-WHILE; - - end of cycle PRINT(M);

Question 5: Use Fermat's Little Theorem and the Chinese Reminder Theorem, or Euler's theorem to compute $1234567^{2345} \pmod{15}$.