Boston University Summer I 2009

Number Theory Kalin Kostadinov

Quiz V

student: 06/16/2009

Question 1: Realign the columns and fill in the five blanks:

Mathematician		Theorem		Example
0)	Ι	There exist infinitely many	A:	$13 = 2^2 + 3^2$
1) Euclid	Π	$(a,b) = 1 \Rightarrow \exists x, y : ax + by = 1$	В	$2, 3, 5, 7, \cdots$
2) Fermat	III	$(a,n) = 1 \Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$	C:	$(5,7) = 1$ and $5 \cdot 3 + 7 \cdot (-2) = 1$
3) Euler	IV	Let p be a prime $p \equiv _$ _	D:	$x^2 \equiv 5(modp)$ has solution if and
	the	en p is a sum of	onl	y if $x^2 \equiv p(mod5)$ has
			(p	is an arbitrary odd prime)
4) Diophantus	V	Law of Quadratic Reciprocity	E:	

4) Diophantus V Law of Quadratic Reciprocity

0 - -1 - -2_ _ 3 - -4 - -

Question 2: Solve the congruences:

 $19x \equiv 13 \pmod{26}$

 $x^2 + 5x \equiv 7 \pmod{1}$

Boston University Summer I 2009 Number Theory Kalin Kostadinov

Question 3: For the following two statements, first give a restatement, than give the contrary statement.

Example: Let $a, b \in \mathbb{N}$. If a and b are relatively prime, then the arithmetic progression $a, a + b, a + 2b \dots$ contains infinitely many prime numbers. In other words, if the arithmetic progression $a, a + b, a + 2b \dots$ contains only finitely many prime numbers, then a and b are not relatively prime. Indeed, assume the contrary, that there exists a pair of relatively prime

numbers a and b, such that the arithmetic progression a, a + b, a + 2b... contains only finitely many prime numbers.

Fact: Let $a, p \in \mathbb{N}$. If p is prime, and a is relatively prime with p, then $a^{p-1} \equiv 1 \pmod{p}$. Equivalently,...

Indeed, assume the contrary ...

Fact: If every proper divisor of an integer is even, then the integer must be a power of 2. Equivalently, ...

Indeed, assume the contrary...

Question 4: Only one of the three Linear Diophantine equations has a solution. Use the Euclid algorithm to find which one, and then to solve it.

A) 679x + 315y = 5. B) 679x + 315y = 6. C) 679x + 315y = 7.