Reaction-Diffusion Equations In Narrow Tubes and Wave Front Propagation

Konstantinos Spiliopoulos

University of Maryland, College Park USA

Outline of Part I

1 Definitions and Real Life Examples

• What is Wave Front Propagation ?

同 ト イ ヨ ト イ ヨ ト

Outline of Part II

2 Description of the problem

- Description of the problem
- Characterization of the Wave Front.
- References

• • = • • = •

Definitions and Real Life Examples

Part I

Introduction and Real Life Examples

Konstantinos Spiliopoulos Reaction-Diffusion Equations In Narrow Tubes and Wave Front F

I ≡ ▶ < </p>

Definitions

Wave propagation is any of the ways in which waves travel through a medium.

<u>Wavefront</u> is the locus (a line, or, in a wave propagating in 3 dimensions, a surface) of points having the same phase.

Examples

- Radio propagation and electromagnetic waves.
- Signal transmission and fiber optics.
- Surface waves in water.
- Electrical activity in membranes of living organisms.
- Nano-tubes in nano-technology.
- In combustion theory a wave describes how solid fuel or gas is burnt as the flame front passes through a long, narrow domain.

伺 ト イ ヨ ト イ ヨ ト

Part II

Description of the Problem and Main Result

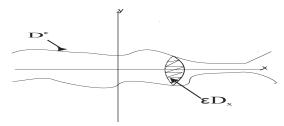
Konstantinos Spiliopoulos Reaction-Diffusion Equations In Narrow Tubes and Wave Front F

I ≡ ▶ < </p>

Description of the problem Characterization of the Wave Front. References

Description of the problem.

Let $D^{\epsilon} = \{(x, y) : x \in \mathbb{R}^1, y \epsilon^{-1} \in D_x \subset \mathbb{R}^2\} \subset \mathbb{R}^3$ be a thin tube of width $\epsilon \ll 1$ in \mathbb{R}^3 .



Our aim is to study reaction-diffusion equations in the narrow tube D^{ϵ} . It is of particular interest to mathematically explain the **effect that the width of the tube** may have in the propagation of the wave front.

Description of the problem Characterization of the Wave Front. References

Description of the problem.

We model the flow of the quantity of interest by $u^{\epsilon} = u^{\epsilon}(t, x, y)$ where u^{ϵ} is the solution to the following P.D.E.

$$u_t^{\epsilon} = \frac{1}{2} \triangle u^{\epsilon}, \qquad \text{in } (0, T) \times D^{\epsilon} \qquad (1)$$

$$u^{\epsilon}(0, x, y) = f(x), \qquad \text{on } \{0\} \times D^{\epsilon}$$

$$\frac{\partial u^{\epsilon}}{\partial \gamma^{\epsilon}} = -\epsilon c(x, y, u^{\epsilon}) u^{\epsilon}, \qquad \text{on } (0, T) \times \partial D^{\epsilon},$$

where γ^{ϵ} is the inward unit normal to ∂D^{ϵ} and $\Delta u^{\epsilon} = u_{xx}^{\epsilon} + u_{yy}^{\epsilon}$. The goal is to examine the behavior of the function $u^{\epsilon}(t, x, y)$ as $\epsilon \downarrow 0$.

- 4 周 ト - 4 月 ト - 4 月 ト -

In the theory of excitable media:

- Each point in \mathbb{R}^3 is allowed to attain two states: it is either excited or non-excited (**threshold** effect).
- The excitation (i.e. the set of excited points) expands with increasing time. Each point in \mathbb{R}^3 which is reached by the excitation at time *t* becomes immediately excited and remains in this state for ever. Beginning with the moment *t*, the point in \mathbb{R}^3 itself serves as a source for the further propagation of excitation.

Questions to answer...

More specifically the questions that we ask, are the following:

() Is it possible to find a set Q so that

$$\lim_{\epsilon \downarrow 0} u^{\epsilon}(t, x, y) = \begin{cases} 1, & (t, x) \in Q \\ 0, & (t, x) \notin Q \end{cases}$$
(2)

- 2 What are the properties of the set Q?
- How does the wave front propagates? Are jumps of the wave front possible?
- How does the volume of the cross-sections D_x affect the propagation of the wave front ?

answers...

- 4 周 ト 4 ヨ ト 4 ヨ ト

Assumptions: Slowly Changing Media, KPP Nonlinearity.

We assume

- The functions c(·, 0, u), f(·) and the cross-section D_x change slowly in x. This means, for example, that f(·) = f(δx) for 0 < δ ≪ 1.
- The nonlinear boundary term c(x, y, u), is of K-P-P type for y = 0:
 - c(x,0,u) is positive for u < 1
 - c(x, 0, u) negative for u > 1
 - $c(x) = c(x, 0, 0) = \max_{0 \le u \le 1} c(x, 0, u).$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Wave Front in Slowly Changing Media.

Then one can prove (K.S. M.F. 2008) that

$$Q = \{(t, x) : W(t, x) > 0\}.$$

Here W is a function of (t, x) that is the solution to some Hamilton-Jacobi-Bellman equation.

$$\lim_{\delta \downarrow 0} \lim_{\epsilon \downarrow 0} u^{\epsilon}(\frac{t}{\delta}, \frac{x}{\delta}, y) = \begin{cases} 1, & W(t, x) > 0\\ 0, & W(t, x) < 0 \end{cases}$$

(3)

A (B) A (B) A (B) A

The equation W(t, x) = 0 defines the position of the interface (wavefront) between areas where u^{ϵ} (for $\epsilon > 0$ small enough) is close to 0 and to 1.

Wave Front in Slowly Changing Media.

Then one can prove (K.S. M.F. 2008) that

$$Q = \{(t, x) : W(t, x) > 0\}.$$

Here W is a function of (t, x) that is the solution to some Hamilton-Jacobi-Bellman equation. So

$$\lim_{\delta \downarrow 0} \lim_{\epsilon \downarrow 0} u^{\epsilon} \left(\frac{t}{\delta}, \frac{x}{\delta}, y\right) = \begin{cases} 1, & W(t, x) > 0\\ 0, & W(t, x) < 0 \end{cases}$$
(3)

The equation W(t, x) = 0 defines the position of the interface (wavefront) between areas where u^{ϵ} (for $\epsilon > 0$ small enough) is close to 0 and to 1.

・ 同 ト ・ ヨ ト ・ ヨ ト

Description of the problem Characterization of the Wave Front. References

Sketch of the proof.

Step 1. A-priori bounds for the solution:

There is a constant *C*, independent of ϵ , and an open set $I \subset (0, 1)$ such that for any $a \in I$:

$$\overline{\|u^{\epsilon}\|}_{D^{\epsilon},T,1+a} + \|D^{2}u^{\epsilon}\|_{V_{T}^{\epsilon}} \leq C.$$
(4)

Here
$$\overline{\|u^{\epsilon}\|}_{D^{\epsilon},T,1+a} = \|u\|_{\overline{D}^{\epsilon}_{T},a} + \|u_t\|_{\overline{D}^{\epsilon}_{T}} + \|Du\|_{(0,T)\times\overline{D}^{\epsilon}}.$$

伺 ト イ ヨ ト イ ヨ ト

Sketch of the proof.

Step 2. Feynmann-Kac Formula:

$$u^{\epsilon}(t,x,y) = E_{x,y}f(X_{t}^{\epsilon})\exp[\int_{0}^{t}\epsilon c(X_{s}^{\epsilon},Y_{s}^{\epsilon},u^{\epsilon}(t-s,X_{s}^{\epsilon},Y_{s}^{\epsilon}))dL_{s}^{\epsilon}]$$
(5)

Here $(X_t^{\epsilon}, Y_t^{\epsilon})$ is the Wiener process in D^{ϵ} with reflection on ∂D^{ϵ} and L_t^{ϵ} is the local time for this process. Its trajectories are described by the S.D.E.:

$$X_{t}^{\epsilon} = x + W_{t}^{1} + \int_{0}^{t} \gamma_{1}^{\epsilon} (X_{s}^{\epsilon}, Y_{s}^{\epsilon}) dL_{s}^{\epsilon}$$

$$Y_{t}^{\epsilon} = y + W_{t}^{2} + \int_{0}^{t} \gamma_{2}^{\epsilon} (X_{s}^{\epsilon}, Y_{s}^{\epsilon}) dL_{s}^{\epsilon}.$$
(6)

・ 同 ト ・ ヨ ト ・ ヨ ト

Description of the problem Characterization of the Wave Front. References

Sketch of the proof.

Step 3. Convergence of Underlying Stochastic Process: Let X_t be the solution of the stochastic differential equation

$$X_{t} = x + W_{t}^{1} + \int_{0}^{t} \frac{1}{2} \nabla(\log V(X_{s})) ds.$$
 (7)

where V(x) is the volume of D_x . Let H(x, y) be a given smooth function and define $Q(x) = \frac{1}{V(x)} \int_{\partial D_x} H(x, y) dS_x$. Then for any T > 0 and as $\epsilon \downarrow 0$:

$$\begin{split} \sup_{t \leq T} & E|X_t^{\epsilon} - X_t|^2 \to 0.\\ \sup_{t \leq T} & E|\int_0^t \frac{1}{2}Q(X_s^{\epsilon})ds - \int_0^t \epsilon H(X_s^{\epsilon}, Y_s^{\epsilon}/\epsilon)|\gamma_2^{\epsilon}(X_s^{\epsilon}, Y_s^{\epsilon})|dL_s^{\epsilon}|^2 \to 0 \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Sketch of the proof.

Step 4. Limit of u^{ϵ} :

 $u^{\epsilon}(t, x, y) \rightarrow u(t, x)$ as $\epsilon \rightarrow 0$, uniformly in any compact subset of $\mathbb{R}_+ \times \mathbb{R}^n \times \mathbb{R}^m$,

where u(t, x) is the solution to:

$$u(t,x) = E_x f(X_t) \exp[\int_0^t \frac{S(X_s)}{V(X_s)} c(X_s, 0, u(t-s, X_s)) ds].$$
(8)

By Feynmann-Kac formula it satisfies

$$u_{t} = \frac{1}{2} \triangle_{x} u + \frac{1}{2} \nabla (\log V(x)) \nabla_{x} u + \frac{S(x)}{V(x)} c(x, 0, u) u$$

$$u(0, x) = f(x).$$
(9)

Here V(x) is the volume of D_x and S(x) is the surface area of ∂D_x .

Description of the problem Characterization of the Wave Front. References

Sketch of the proof.

Step 5. Limit of
$$u^{\delta}(t, x) = u(t/\delta, x/\delta)$$
:

Then under certain conditions (M.F.) we have:

$$\lim_{\delta \downarrow 0} u^{\delta}(t,x) = \begin{cases} 1, & W(t,x) > 0\\ 0, & W(t,x) < 0 \end{cases}$$
(10)

So putting things together we have

$$\lim_{\delta \downarrow 0} \lim_{\epsilon \downarrow 0} u^{\epsilon} \left(\frac{t}{\delta}, \frac{x}{\delta}, y \right) = \begin{cases} 1, & W(t, x) > 0\\ 0, & W(t, x) < 0 \end{cases}$$
(11)

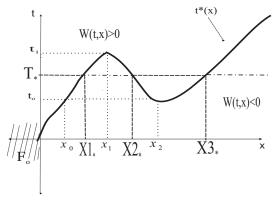
・ 同 ト ・ ヨ ト ・ ヨ ト

Wave Front Propagation in Narrow Tubes

Description of the problem Characterization of the Wave Front. References

When does the Wave Front have Jumps ?

Let
$$t^* = t^*(x)$$
 be such that $W(t^*, x) = 0$.



- The wavefront jumps from x_o to x_2 at time t_o .
- For $t = T_*$ the points $x \in (0, X1_*) \cup (X2_*, X3_*)$ are excited whereas the points $x \in (X1_*, X2_*)$ are not excited.

When does the Wave Front have Jumps ?

Let $\bar{c}(x) = \frac{S(x)}{V(x)}c(x,0,0)$, where S(x) and V(x) are the surface area and the volume of the cross-sections D_x respectively.

If c
 (x) increases rapidly at some point x, then t* = t*(x) is as in the previous figure (K.S, M.F 2008).

Special case:

If c(x, 0, 0) is constant $\downarrow \downarrow$ Jumps occur at places where $\frac{S(x)}{V(x)}$ increases rapidly \updownarrow s occur at places where the tube D^1 becomes thinner (st when the tube D^1 retains its shape as x increases).

When does the Wave Front have Jumps ?

Let $\bar{c}(x) = \frac{S(x)}{V(x)}c(x,0,0)$, where S(x) and V(x) are the surface area and the volume of the cross-sections D_x respectively.

If c
 (x) increases rapidly at some point x, then t* = t*(x) is as in the previous figure (K.S, M.F 2008).

Special case:

If c(x, 0, 0) is constant

 $\bigcup_{\text{Jumps occur at places where } \frac{S(x)}{V(x)} \text{ increases rapidly}}$

\$

Jumps occur at places where the tube D^1 becomes thinner (at least when the tube D^1 retains its shape as x increases).

同 ト イヨ ト イヨ ト ヨ うくや

References.

- S.N. Ethier, T.G. Kurtz, Markov processes: Characterization and Convergence, Wiley, New York, 1986.
- M. Freidlin and K. Spiliopoulos, 2008, "Reaction Diffusion Equations with non-linear boundary conditions in narrow domains", submitted to the journal of Asymptotic Analysis.
- M. Freidlin, Functional Integration and Partial Differential Equations, Princeton University Press, 1985.
- M. Freidlin, Wave Front Propagation for KPP-Type Equations, Survey in Applied Mathematics, 2 (1995), pp. 1-62.

・ロト ・得ト ・ヨト ・ヨト

References.

- M. Freidlin, Markov Processes and Differential Equations: Asymptotic Problems, Birkhäuser Verlang, 1996.
- M. Freidlin, Coupled Reaction Diffusion Equations, Annals of Probability, Vol. 19, No. 1 (1991), pp. 29-57. M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems, Second Edition, Springer, 1998.
- A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, 1964.
- J. Gärtner, Bistable Reaction-Diffusion Equations and Excitable Media, Mathematiche Nachrichten, Vol. 112 (1983), pp. 125-152.

・ロト ・同ト ・ヨト ・ヨト

-

References.

- Peter Grindrod, The Theory and Applications of Reaction-Diffusion Equations, Patterns and Waves, Second edition, Oxford press, 1996.
- I.Karatzas, S.E.Shreve, Brownian Motion and Stochastic Calculus, Second edition, Springer, 1994.
- A. Kolmogorov, I. Petrovskii, N. Piskunov, Étude de l'èquation de la diffusion avec croissence de la matière et son application a un problème biologique, Moscov University Bull. Math., Vol. 1 (1937), pp. 1-25.
- J. Nolen, J. Xin, KPP Fronts in a One-Dimensional Random Drift, (2007), preprint.

イロト イポト イヨト イヨト 二日

Wave Front Propagation in Narrow Tubes	Description of the problem Characterization of the Wave Front. References
--	--

THANK YOU!!!!!

・ロン ・部 と ・ ヨ と ・ ヨ と …

3