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Definitions and Real Life Examples What is Wave Front Propagation ?

Definitions

Wave propagation is any of the ways in which waves travel
through a medium.

Wavefront is the locus (a line, or, in a wave propagating in 3
dimensions, a surface) of points having the same phase.
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Definitions and Real Life Examples What is Wave Front Propagation ?

Examples

Radio propagation and electromagnetic waves.

Signal transmission and fiber optics.

Surface waves in water.

Electrical activity in membranes of living organisms.

Nano-tubes in nano-technology.

In combustion theory a wave describes how solid fuel or gas is
burnt as the flame front passes through a long, narrow
domain.

Konstantinos Spiliopoulos Reaction-Diffusion Equations In Narrow Tubes and Wave Front Propagation



Wave Front Propagation in Narrow Tubes

Part II

Description of the Problem and Main Result

Konstantinos Spiliopoulos Reaction-Diffusion Equations In Narrow Tubes and Wave Front Propagation



Wave Front Propagation in Narrow Tubes
Description of the problem
Characterization of the Wave Front.
References

Description of the problem.

Let Dε = {(x , y) : x ∈ R1, yε−1 ∈ Dx ⊂ R2} ⊂ R3 be a thin tube
of width ε � 1 in R3.

y

x

D
ε

εD
x

Our aim is to study reaction-diffusion equations in the narrow tube
Dε. It is of particular interest to mathematically explain the effect
that the width of the tube may have in the propagation of the
wave front.
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Description of the problem.

We model the flow of the quantity of interest by uε = uε(t, x , y)
where uε is the solution to the following P.D.E.

uε
t =

1

2
4uε, in (0,T )× Dε (1)

uε(0, x , y) = f (x), on {0} × Dε

∂uε

∂γε
= −εc(x , y , uε)uε, on (0,T )× ∂Dε,

where γε is the inward unit normal to ∂Dε and 4uε = uε
xx + uε

yy .
The goal is to examine the behavior of the function uε(t, x , y) as
ε ↓ 0.
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Motivation.

In the theory of excitable media:

Each point in R3 is allowed to attain two states: it is either
excited or non-excited (threshold effect).

The excitation (i.e. the set of excited points) expands with
increasing time. Each point in R3 which is reached by the
excitation at time t becomes immediately excited and remains
in this state for ever. Beginning with the moment t, the point
in R3 itself serves as a source for the further propagation of
excitation.
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Questions to answer...

More specifically the questions that we ask, are the following:

1 Is it possible to find a set Q so that

lim
ε↓0

uε(t, x , y) =

{
1, (t, x) ∈ Q

0, (t, x) /∈ Q
(2)

2 What are the properties of the set Q ?

3 How does the wave front propagates? Are jumps of the wave
front possible?

4 How does the volume of the cross-sections Dx affect the
propagation of the wave front ?

answers...
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Assumptions: Slowly Changing Media, KPP Nonlinearity.

We assume

The functions c(·, 0, u), f (·) and the cross-section Dx change
slowly in x . This means, for example, that f (·) = f (δx) for
0 < δ � 1.

The nonlinear boundary term c(x , y , u), is of K-P-P type for
y = 0:

c(x , 0, u) is positive for u < 1
c(x , 0, u) negative for u > 1
c(x) = c(x , 0, 0) = max0≤u≤1 c(x , 0, u).
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Wave Front in Slowly Changing Media.

Then one can prove (K.S. M.F. 2008) that

Q = {(t, x) : W (t, x) > 0}.

Here W is a function of (t, x) that is the solution to some
Hamilton-Jacobi-Bellman equation.
So

lim
δ↓0

lim
ε↓0

uε(
t

δ
,
x

δ
, y) =

{
1, W (t, x) > 0

0, W (t, x) < 0
(3)

The equation W (t, x) = 0 defines the position of the interface
(wavefront) between areas where uε (for ε > 0 small enough) is
close to 0 and to 1.

Konstantinos Spiliopoulos Reaction-Diffusion Equations In Narrow Tubes and Wave Front Propagation



Wave Front Propagation in Narrow Tubes
Description of the problem
Characterization of the Wave Front.
References

Wave Front in Slowly Changing Media.

Then one can prove (K.S. M.F. 2008) that

Q = {(t, x) : W (t, x) > 0}.

Here W is a function of (t, x) that is the solution to some
Hamilton-Jacobi-Bellman equation.
So

lim
δ↓0

lim
ε↓0

uε(
t

δ
,
x

δ
, y) =

{
1, W (t, x) > 0

0, W (t, x) < 0
(3)

The equation W (t, x) = 0 defines the position of the interface
(wavefront) between areas where uε (for ε > 0 small enough) is
close to 0 and to 1.

Konstantinos Spiliopoulos Reaction-Diffusion Equations In Narrow Tubes and Wave Front Propagation



Wave Front Propagation in Narrow Tubes
Description of the problem
Characterization of the Wave Front.
References

Sketch of the proof.

Step 1. A-priori bounds for the solution:

There is a constant C , independent of ε, and an open set
I ⊂ (0, 1) such that for any a ∈ I :

‖uε‖Dε,T ,1+a + ‖D2uε‖V ε
T
≤ C . (4)

Here ‖uε‖Dε,T ,1+a = ‖u‖D
ε
T ,a + ‖ut‖D

ε
T

+ ‖Du‖(0,T )×D
ε .
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Sketch of the proof.

Step 2. Feynmann-Kac Formula:

uε(t, x , y) = Ex ,y f (X ε
t ) exp[

∫ t

0
εc(X ε

s ,Y ε
s , uε(t − s,X ε

s ,Y ε
s ))dLε

s ]

(5)

Here (X ε
t ,Y ε

t ) is the Wiener process in Dε with reflection on ∂Dε

and Lε
t is the local time for this process. Its trajectories are

described by the S.D.E.:

X ε
t = x + W 1

t +

∫ t

0
γε

1(X
ε
s ,Y ε

s )dLε
s

Y ε
t = y + W 2

t +

∫ t

0
γε

2(X
ε
s ,Y ε

s )dLε
s . (6)
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Sketch of the proof.

Step 3. Convergence of Underlying Stochastic Process:
Let Xt be the solution of the stochastic differential equation

Xt = x + W 1
t +

∫ t

0

1

2
∇(log V (Xs))ds. (7)

where V (x) is the volume of Dx .
Let H(x , y) be a given smooth function and define
Q(x) = 1

V (x)

∫
∂Dx

H(x , y)dSx . Then for any T > 0 and as ε ↓ 0:

supt≤T E |X ε
t − Xt |2 → 0.

supt≤T E |
∫ t

0

1

2
Q(X ε

s )ds −
∫ t

0
εH(X ε

s ,Y ε
s /ε)|γε

2(X
ε
s ,Y ε

s )|dLε
s |2 → 0
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Sketch of the proof.

Step 4. Limit of uε:

uε(t, x , y) → u(t, x) as ε → 0, uniformly in any compact subset of
R+ × Rn × Rm,

where u(t, x) is the solution to:

u(t, x) = Ex f (Xt) exp[

∫ t

0

S(Xs)

V (Xs)
c(Xs , 0, u(t − s,Xs))ds]. (8)

By Feynmann-Kac formula it satisfies

ut =
1

2
4xu +

1

2
∇(log V (x))∇xu +

S(x)

V (x)
c(x , 0, u)u

u(0, x) = f (x). (9)

Here V (x) is the volume of Dx and S(x) is the surface area of ∂Dx .
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Sketch of the proof.

Step 5. Limit of uδ(t, x) = u(t/δ, x/δ):

Then under certain conditions (M.F.) we have:

lim
δ↓0

uδ(t, x) =

{
1, W (t, x) > 0

0, W (t, x) < 0
(10)

So putting things together we have

lim
δ↓0

lim
ε↓0

uε(
t

δ
,
x

δ
, y) =

{
1, W (t, x) > 0

0, W (t, x) < 0
(11)
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When does the Wave Front have Jumps ?

Let t∗ = t∗(x) be such that W (t∗, x) = 0.

to

W(t,x)>0

W(t,x)<0

t (x)*
t

x

Fo

t1

0x
1x 2x

T*

X1* X2*
X3*

The wavefront jumps from xo to x2 at time to .
For t = T∗ the points x ∈ (0,X1∗) ∪ (X2∗,X3∗) are excited
whereas the points x ∈ (X1∗,X2∗) are not excited.
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When does the Wave Front have Jumps ?

Let c̄(x) = S(x)
V (x)c(x , 0, 0), where S(x) and V (x) are the surface

area and the volume of the cross-sections Dx respectively.

If c̄(x) increases rapidly at some point x , then t∗ = t∗(x) is
as in the previous figure (K.S, M.F 2008).

Special case:

If c(x , 0, 0) is constant

⇓

Jumps occur at places where S(x)
V (x) increases rapidly

m

Jumps occur at places where the tube D1 becomes thinner (at
least when the tube D1 retains its shape as x increases).
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J. Gärtner, Bistable Reaction-Diffusion Equations and
Excitable Media, Mathematiche Nachrichten, Vol. 112
(1983), pp. 125-152.

Konstantinos Spiliopoulos Reaction-Diffusion Equations In Narrow Tubes and Wave Front Propagation



Wave Front Propagation in Narrow Tubes
Description of the problem
Characterization of the Wave Front.
References

References.

Peter Grindrod, The Theory and Applications of
Reaction-Diffusion Equations, Patterns and Waves, Second
edition, Oxford press, 1996.

I.Karatzas, S.E.Shreve, Brownian Motion and Stochastic
Calculus, Second edition, Springer, 1994.

A. Kolmogorov, I. Petrovskii, N. Piskunov, É tude de
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