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According to the Smoluchowski-Kramers approximation, the solution of the

equation µq̈
µ
t = b(qµ

t )− q̇
µ
t +σ(qµ

t )Ẇt, q
µ
0 = q, q̇

µ
0 = p converges to the solution of the

equation q̇t = b(qt)+σ(qt)Ẇt, q0 = q as µ → 0. We consider here a similar result for

the Langevin process with elastic reflection on the boundary. In particular we prove

that the Langevin process with reflection converges in distribution to a standard

diffusion process with reflection. This result is the main justification for using a

first order equation, instead of a second order one, to describe the motion of a small

mass particle that is restricted to move in the interior of some domain and reflects

elastically on its boundary.
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Chapter 1

Introduction

1.1 Overview

According to the Smoluchowski-Kramers approximation ([4],[5]), the solution

of the stochastic differential equation (S.D.E.)

µq̈
µ
t = b(qµ

t ) − q̇
µ
t + σ(qµ

t )Ẇt (1.1)

q
µ
0 = q ∈ R1

q̇
µ
0 = p ∈ R1

converges in probability as µ → 0 to the solution of the following S.D.E.:

q̇t = b(qt) + σ(qt)Ẇt (1.2)

q0 = q ∈ R1

More precisely, one can prove that for any δ, T > 0 and q, p ∈ R1,

lim
µ↓0

P ( max
0≤t≤T

|qµ
t − qt| > δ) = 0, (1.3)

where b : R1 → R1 and σ : R1 → R1 have bounded first derivatives and Wt is the

standard one-dimensional Brownian motion (see, for example, Lemma 1 in [2]).

Equation (1.1) describes the motion of a particle of mass µ in a force field

b(q) + σ(q)Ẇt, with a friction proportional to velocity. The Smoluchowski-Kramers
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approximation justifies the use of equation (1.2) to describe the motion of a small

particle.

Let R2
+ = {x ∈ R2 : x1 ≥ 0}. In this paper we examine the behavior of the

process with elastic reflection on the boundary ∂R2
+ = {x ∈ R2 : x1 = 0} that is

governed by (1.1) for x1 > 0, i.e. of the Langevin process with reflection, as µ → 0.

We will show that the first component of the Langevin process with reflection at

q = 0 converges in distribution to the diffusion process with reflection on ∂R1
+ that

is governed by equation (1.2).

1.2 Outline of the scholarly paper

In chapter 2 we define the Langevin process with reflection and we prove that

the definition is correct. In chapter 3 we consider the limit of the Langevin process

with elastic reflection as µ → 0 and we prove that it converges in distribution to a

diffusion process with reflection. We conclude with the bibliography.
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Chapter 2

Construction of the Langevin Process with Reflection

2.1 Definition of the Langevin Process with Reflection

We begin with the construction of the Langevin process (qµ
t ; pµ

t ) in R2
+ with

elastic reflection on the boundary. Let b : R1
+ → R1 and σ : R1

+ → R1 have bounded

first derivatives and σ be non-degenerate. Let also (q, p) ∈ R2
+ be the initial point

(we assume that q2 + p2 6= 0). Define the process (qµ
t ; pµ

t ) as the solution of the

following S.D.E.:

q̇
µ
t = p

µ
t

µṗ
µ
t = −p

µ
t + b(qµ

t ) + σ(qµ
t )Ẇt (2.1)

q
µ
0 = q, p

µ
0 = p,

for t ∈ [0, τµ
1 ), where τ

µ
1 = inf{t > 0 : q

µ
t = 0}. Then define (qµ

t ; pµ
t ) for t ∈ [τµ

1 , τ
µ
2 ),

where τ
µ
2 = inf{t > τ

µ
1 : q

µ
t = 0}, as the solution of (2.1) with initial conditions

(qµ

τ
µ
1

; pµ

τ
µ
1

) = (0;− limt↑τµ
1

p
µ
t ). If 0 < τ

µ
1 < τ

µ
2 < ... < τ

µ
k and (qµ

t ; pµ
t ) for t ∈ [0, τµ

k )

are already defined, then define (qµ
t ; pµ

t ) for t ∈ [τµ
k , τk+1) as solution of (2.1) with

initial conditions (qµ

τ
µ

k

; pµ

τ
µ

k

) = (0;− limt↑τµ

k
p

µ
t ) (see Figure 1 for an illustration).

This construction defines the process (qµ
t ; pµ

t ) in R2
+ for all t ≥ 0. This follows

from Theorem 2.4, whose proof however will be given at the end of this section. The
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sequence {τµ
i } is a strictly increasing sequence of Markov times. Therefore we have

the following definition:

Definition 2.1 We call the above recursively constructed process the Langevin

process with elastic reflection on the boundary ∂R2
+. This process has jumps on ∂R2

+

and is continuous inside R2
+.

Below we see an illustration of the construction above in the q−p phase space.

Figure 2.1: Illustration of the Langevin process with reflection in the q − p phase

space

We will refer to the Langevin process with reflection as l.p.r.(qµ
t ; pµ

t ). Moreover

we will denote by (qµ,q
t ; pµ,p

t ) the solution to (2.1) with initial condition (q, p).
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2.2 An equivalent construction of the Langevin process with reflec-

tion

Let us give now another construction of the Langevin process with reflection.

This construction is equivalent to the first one and it will help us prove the above

mentioned Theorem 2.4.

Let us consider the following S.D.E. in R2:

q̇
µ
t = p

µ
t

µṗ
µ
t = −p

µ
t + sgn(qµ

t )b(|qµ
t |) + sgn(qµ

t )σ(|qµ
t |)Ẇt (2.2)

q
µ
0 = q, p

µ
0 = p,

where sgn(x) takes two values, 1 if x ≥ 0 and -1 if x < 0.

Lemma 2.2 Equation (2.2) has a weak solution which is unique in the sense

of probability law.

Proof. The existence follows from a Girsanov’s Theorem on the absolutely

continuous change of measures in the space of trajectories (b and σ are assumed

bounded) and the fact that (2.2) with b = 0 has a weak solution. The uniqueness

follows from Proposition 5.3.10 of [4].

2

Using the processes (qµ,q
t ; pµ,p

t ) and (qµ,−q
t ; pµ,−p

t ) we can construct the Langevin

process with reflection as follows. Assume that p > 0 and q > 0. Then the graphs

of p
µ,p
t and of p

µ,−p
t will be exactly symmetric with respect to zero. The same will be
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true also for the graphs of q
µ,q
t and of q

µ,−q
t . Let τ

µ
0 = 0, τµ

k = inf{t > τk−1 : q
µ,q
t = 0}

and (q̂µ
t ; p̂µ

t ) be a stochastic process, which is defined as follows:

(q̂µ
t ; p̂µ

t ) = (qµ,q
t ; pµ,p

t ) for τ
µ
2k ≤ t ≤ τ

µ,−
2k+1

(q̂µ
t ; p̂µ

t ) = (qµ,−q
t ; pµ,−p

t ) for τ
µ
2k+1 ≤ t ≤ τ

µ,−
2k+2, k = 0, 1, 2, ... (2.3)

Process (q̂µ
t ; p̂µ

t ) is a process with reflection on ∂R2
+ and it is easy to see that

(q̂µ
t ; p̂µ

t ) defined by (2.3) and l.p.r.(qµ
t ; pµ

t ) = (|qµ
t |;

d
dt
|qµ

t |) coincide.

In the figures below we see an illustration of this construction of the Langevin

process with reflection. The first figure illustrates with thick continuous and dotted

lines q̂
µ
t versus t. The continuous line is q

µ,q
t versus t and the dotted q

µ,−q
t versus

t. The second figure illustrates with thick continuous and dotted lines p̂
µ
t versus t.

The continuous line is p
µ,p
t versus t and the dotted p

µ,−p
t versus t.

Figure 2.2: Illustration of the process with reflection
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2.3 Proof that the Langevin process with reflection is well defined

Theorem 2.4 uses Lemma 2.3 to show that in any finite time T , the process

l.p.r.(qµ
t ; pµ

t ), does not have infinitely many jumps.

Lemma 2.3 Let T > 0. The process (qµ
t ; pµ

t ), starting at a point different from

(0, 0), that satisfies system (2.2), does not reach the origin O = (0, 0) in finite time

T, i.e. P (∃t ≤ T s.t. (qµ
t ; pµ

t ) = O) = 0.

Proof. Let δ ≪ 1 be a small number. Define the rectangle ∆ = {(q, p) ∈

R1 × R1 : |q| ≤ δ2

2
, |p| ≤ δ

2
} and suppose that the trajectory starts from some point

outside the rectangle ∆, say from (q, 0) ∈ R2 \ ∆.

Figure 2.3: The particle does not hit the origin with positive probability

Let also χ∆(x) denote the indicator function of the set ∆, which takes value

1 if x ∈ ∆ and 0 otherwise. If b = 0 and σ = 1, (qµ
t ; pµ

t ) is a Markovian Gaussian
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process. One can write down its density explicitly (see equation (2.2)), which we

denote by ρ(·), and obtain the bound

E(q,0)
∫ T

0
χ∆(qµ

s ; pµ
s )ds =

∫

∆

∫ T

0
ρ(s, (q, 0), y)dsdy ≤ A(T, q)δ3, (2.4)

where A(T, q) is a constant that depends on T and q, and E(q,0)
∫ T
0 χ∆(qµ

s ; pµ
s )ds is

the expected value of the time ,during [0, T ], that the process (qµ
t ; pµ

t ) with initial

point (q, 0) spends inside the rectangle ∆. The general case can be reduced to the

case with b = 0 and σ = 1 by an absolutely continuous change of measures in the

space of trajectories and a random time change.

We will establish now a lower bound for the quantity E(q,0)
∫ T
0 χ∆(qµ

s ; pµ
s )ds

under the assumption that the Markov process (qµ
t ; pµ

t ) will reach (0, 0) before time

T with positive probability. This will lead to a contradiction.

Again by Girsanov’s theorem on the absolute continuity of measures in the

space of trajectories it is enough to consider the solution of the following S.D.E:

q̇
µ
t = p

µ
t

ṗ
µ
t =

1

µ
σ(|qµ

t |)Ẇ t (2.5)

q
µ
0 = q, p

µ
0 = 0,

where W t =
∫ t
0 sgn(qµ

u)dWu.

By the self similarity properties of the Wiener process one can find a Wiener

process W ∗
t such that

∫ t
0

1
µ
σ(|qµ

s |)dW s = W ∗
θ(t), where θ(t) =

∫ t
0

1
µ2 σ

2(|qµ
s |)ds. So

∫ t
0

1
µ
σ(|qµ

s |)dW s can be obtained from W ∗
t via a random time change.

By the law of iterated logarithm we get that for any k ∈ [0, 1] there exists

a to(k) small enough, such that P (t
1

2
+k ≤ |W ∗

t | ≤ t
1

2
−k for t ∈ [0, to(k)]) ≥ 1 − k.
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Observe that if t ∈ [0, to(k)] then θ(t) ∈ [0, cto(k)], where c = 1
µ2 supx∈R1 |σ2(x)|.

Define also t
′

o(k) = min{to(k), to(k)
c

}. Then with probability very close to 1, as

k → 0, and for any t ∈ [0, t
′

o(k)], it must hold that |pµ
t | ≤ c1t

1

2
−k and q

µ
t =

∫ t
0 psds ≤

∫ t
0 c1s

1

2
−kds < 2c1t

3

2
−k, for a constant c1.

Let τ be the first time, after the time that the Markov process reached the

origin, that it exits from the rectangle ∆, i.e. τ = inf{t > 0 : (qµ
t ; pµ

t ) ∈ R2 \ ∆}.

Then it follows that

E(q,0)
∫ T

0
χ∆(qµ

s ; pµ
s )ds > E{τ} × P (∃t ≤ T s.t. (qµ

t ; pµ
t ) = O) (2.6)

Define τq = inf{t > 0 : |qµ
t | > δ2

2
} and τp = inf{t > 0 : |pµ

t | > δ
2
}. By the

above bounds for q
µ
t and p

µ
t we get that τq > cqδ

4

3 and τp > cpδ
2, where cq, cp are

some constants independent of δ. So the trajectory exits the rectangle faster in the

direction of p than in the direction of q and the exit time is of order δ2. Therefore,

by this and by (2.4), we have that

Bδ2 < E(q,0)
∫ T

0
χ∆(qµ

s ; pµ
s )ds ≤ Aδ3, (2.7)

which cannot hold for constants A and B and small enough δ. So we have a contra-

diction and therefore it is true that P (∃t ≤ T s.t. (qµ
t ; pµ

t ) = O) = 0.

2

Theorem 2.4The following two statements are true:

1. Let T > 0. The Markov process l.p.r.(qµ
t ; pµ

t )
1 does not reach the origin, O =

1We remind the reader that l.p.r. represents the Langevin process with reflection.
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(0, 0), in finite time T , i.e.

P (∃t ≤ T s.t. l.p.r.(qµ
t ; pµ

t ) = O) = 0.

2. The sequence of Markov times {τµ
k } converges to +∞ as k → +∞, i.e.

P ( lim
k→+∞

τ
µ
k = +∞) = 1.

Proof. The Langevin process with reflection, l.p.r.(qµ
t ; pµ

t ), coincides at any

time t either with (qµ,q
t ; pµ,p

t ) or with (qµ,−q
t ; pµ,−p

t ). Therefore we have that:

P (∃t ≤ T s.t. l.p.r.(qµ
t ; pµ

t ) = O) ≤ P (∃t ≤ T s.t. (qµ,q
t ; pµ,p

t ) = O)

+ P (∃t ≤ T s.t. (qµ,−q
t ; pµ,−p

t ) = O).

Hence, by recalling Lemma 2.3, we deduce that

P (∃t ≤ T s.t. l.p.r.(qµ
t ; pµ

t ) = O) = 0.

Part (ii) is an easy consequence of part (i). It is easy to see that {τµ
k } is an

unbounded, strictly increasing sequence of Markov times. Indeed, if on the contrary

we assume that there exists N such that τ
µ
k ≤ N for all k then the trajectories

of l.p.r.(qµ
t ; pµ

t ) will have limit points. The only possible limit point however is the

origin (0, 0). But by part (i) the probability that within any time T the trajectory

will reach the origin is 0. So {τµ
k } is an unbounded strictly increasing sequence of

Markov times. Therefore we have that P (limk→+∞ τ
µ
k = +∞) = 1.

2

10



Therefore the Langevin process with reflection has only finitely many jumps

in any time interval [0, T ] with probability 1. Hence our definition for the Langevin

process with reflection is valid.

11



Chapter 3

Convergence of the Langevin Process with Reflection

In this section we consider the limit of l.p.r.(qµ
t ) as µ → 0. Below we will

always assume that t ≤ T , where T is a fixed positive real number.

Consider first the following S.D.E.s in R2 and R1 respectively:

˙̃q
µ

t = p̃
µ
t

µ ˙̃p
µ

t = −p̃
µ
t + σ(|q̃µ

t |)
˙̃

W t (3.1)

q̃
µ
0 = q, p̃

µ
0 = p,

and

˙̃qt = σ(|q̃t|)
˙̃

W t (3.2)

q̃0 = q,

where W̃t is the standard one-dimensional Wiener process.

Lemma 3.1 For every δ > 0 we have that E
∫ T
0 χ{|q̃s|≤δ}ds ≤ cδ, where c is a

constant.

Proof. If σ = 1 , q̃t is a Gaussian process. By writing down its transition

density we obtain the bound above, i.e.,

E

∫ T

0
χ{|q̃s|≤δ}ds ≤ c̃δ.

12



The general case can be reduced to the case with σ = 1 by a random time

change.

2

Let us consider now the following S.D.E.’s:

q̇
µ

t = p
µ
t

µṗ
µ

t = −p
µ
t + sgn(qµ

t )b(|qµ
t |) + σ(|qµ

t |)
˙̃

W t (3.3)

q
µ
0 = q, p

µ
0 = p

and

q̇t = sgn(qt)b(|qt|) + σ(|qt|)
˙̃

W t (3.4)

q0 = q

By the same way that we proved Lemma 2.2, one can show that equations

(3.3) and (3.4) have weak solutions, which are unique in the sense of probability

law.

Lemma 3.2 For the time interval [0, T ], qµ
. → q., weakly as µ → 0, where q

µ
t

satisfies (3.3) and qt satisfies (3.4).

Proof. We must prove that for any bounded and continuous functional f that

Eµf(qµ
. ) → Ef(q.) as µ → 0. (3.5)

Let us define

Rµ(T ) = eZµ(T ), Zµ(T ) =
∫ T

0
sgn(q̃µ

u)φ(q̃µ
u)dW̃u −

1

2

∫ T

0
|φ(q̃µ

u)|2du, (3.6)

13



and

R(T ) = eZ(T ), Z(T ) =
∫ T

0
sgn(q̃u)φ(q̃u)dW̃u −

1

2

∫ T

0
|φ(q̃u)|

2du, (3.7)

where q̃
µ
t and q̃t satisfy (3.1) and (3.2) respectively and φ(·) = b(|·|)

σ(|·|)
.

By the Girsanov’s Theorem on the absolutely continuous change of measure

in the space of trajectories we have that

|Eµf(qµ
. ) − Ef(q.)| = |E[f(q̃µ

. )Rµ(T ) − f(q̃.)R(T )]| (3.8)

≤ |E[Rµ(T )(f(q̃µ
. ) − f(q̃.)]| + |E[f(q̃.)(R

µ(T ) − R(T )]|.

The Cauchy inequality, the boundedness of φ and the fact that q̃
µ
t → q̃t uni-

formly in [0, T ] in probability, imply that |E[Rµ(T )(f(q̃µ
. ) − f(q̃.)]| → 0, as µ → 0.

It remains to show that

|E[f(q̃.)(R
µ(T ) − R(T )]| ≤

√
Ef 2(q̃.)

√
E[Rµ(T ) − R(T )]2 → 0, as µ → 0.

If we take into account the basic inequality |ex − ey| ≤ max{ex, ey}|x − y| for

all x, y ∈ R, Cauchy inequality and the fact that φ is bounded, we get that there is

a constant c̃ = c̃(supx∈R |φ(x)|, T ), such that

E[Rµ(T ) − R(T )]2 ≤ c̃
√

E[Zµ(T ) − Z(T )]4.

So it is enough to show that E[Zµ(T ) − Z(T )]4 → 0, as µ → 0. We have:

E[Zµ(T ) − Z(T )]4 ≤ cE

∫ T

0
[sgn(q̃µ

s )φ(q̃µ
s ) − sgn(q̃s)φ(q̃s]

4ds

+
1

2
E[

∫ T

0
[|φ(q̃µ

s )|2 − |φ(q̃s)|
2]ds]4.

14



It is easy to see that the second term of the right hand side of the inequality

above converges to 0 as µ → 0. Moreover because q̃
µ
t → q̃t uniformly in [0, T ] in

probability, we get that for any k ∈ [0, 1], there exists a µo > 0 so small such that

|q̃µ
t − q̃t| < k, for all µ < µo, t ≤ T with probability at least 1 − k. For given δ now

choose k such that 2k < δ. It is easy to see that if |q̃t| > δ, then q̃
µ
t for µ < µo and

q̃t have the same sign with probability at least 1 − k. Hence for µ < µo we have:

E

∫ T

0
[sqn(q̃µ

s )φ(q̃µ
s ) − sqn(q̃s)φ(q̃s)]

4ds

=
∫ T

0
E[φ(q̃µ

s ) − φ(q̃s)]
4χ{|q̃s|>δ}ds +

∫ T

0
E[sqn(q̃µ

s )φ(q̃µ
s ) − sqn(q̃s)φ(q̃s)]

4χ{|q̃s|≤δ}ds

≤
∫ T

0
E[φ(q̃µ

s ) − φ(q̃s)]
4χ{|q̃s|>δ}ds + c1E

∫ T

0
χ{|q̃s|≤δ}ds

≤
∫ T

0
E[φ(q̃µ

s ) − φ(q̃s)]
4χ{|q̃s|>δ}ds + c2δ,

where we have used the boundedness of φ and Lemma 3.1.

If we let now δ, µ → 0 we get E[Zµ(T )−Z(T )]4 → 0. Therefore (3.5) has been

proven.

2

Along with equation (2.2), consider lastly the following S.D.E. in R1:

q̇t = sgn(qt)b(|qt|) + sgn(qt)σ(|qt|)Ẇt (3.9)

q0 = q,

Because of the non-degeneracy of the diffusion coefficient near x1 = 0, one can

prove existence and uniqueness of the weak solution of (3.9), (see for example [3]).

Lemma 3.3 For the time interval [0, T ], qµ
. → q. weakly as µ → 0, where q

µ
t

satisfies (2.2) and qt satisfies (3.9).

15



Proof. We must show that for any bounded and continuous functional f that

Eµf(qµ
. ) → Ef(q.) as µ → 0. (3.10)

The latter follows immediately from Lemma 3.2. Indeed, let us define the

Wiener processes W̃
µ
t =

∫ t
0 sqn(qµ

s )dWs and W̃t =
∫ t
0 sqn(qs)dWs. Then in terms of

the new Wiener processes, equations (2.2) and (3.9) take the form of (3.3) and (3.4)

respectively. Hence we will have that Eµf(qµ
. ) = Eµf(qµ

. ) and Ef(q.) = Ef(q.),

where q
µ
t satisfies (3.3) and qt satisfies (3.4).

2

Lastly by Lemma 3.3 we get that |qµ
. | → |q.|, weakly as µ → 0.

We sum up our result in

Theorem 3.4 For the time interval [0, T ], the Langevin process with reflection

l.p.r.(qµ
t ) converges, weakly as µ → 0, to |qt|; i.e.

l.p.r.(qµ
. ) → |q.|, weakly as µ → 0. (3.11)
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