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Abstract

According to the Smoluchowski-Kramers approximation, the solution
of the equation µq̈µ

t = b(qµ
t ) − q̇µ

t + Σ(qµ
t )Ẇt, q

µ
0 = q, q̇µ

0 = p converges
to the solution of the equation q̇t = b(qt) + Σ(qt)Ẇt, q0 = q as µ → 0.
We consider here a similar result for the Langevin process with elastic
reflection on the boundary.
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1 Introduction

The well-known Smoluchowski-Kramers approximation ([9],[8]) implies that the
solution of the stochastic differential equation (S.D.E.)

µq̈µ
t = b(qµ

t )− q̇µ
t + Σ(qµ

t )Ẇt (1)

qµ
0 = q ∈ Rr

q̇µ
0 = p ∈ Rr

converges in probability as µ → 0 to the solution of the following S.D.E.:

q̇t = b(qt) + Σ(qt)Ẇt (2)

q0 = q ∈ Rr,

where b = (b1, ..., br)
′
(the transpose of (b1, ..., br)) with bj : Rr → R, j = 1, .., r,

Σ = [σij ]ri,j with σij : Rr → R, i, j = 1, .., r have bounded first derivatives and
Wt = (W 1

t , ..., W r
t )
′

is the standard r-dimensional Wiener process. In other
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words, one can prove that for any δ, T > 0 and q, p ∈ Rr (see, for example,
Lemma 1 in [6]),

lim
µ↓0

P ( max
0≤t≤T

|qµ
t − qt| > δ) = 0. (3)

Equation (1) describes the motion of a particle of mass µ in a force field b(q)+
Σ(q)Ẇt with a friction proportional to velocity. The Smoluchowski-Kramers
approximation justifies the use of equation (2) to describe the motion of a small
particle.

It is easy to see now that (1) can be equivalently written as:

q̇µ
t = pµ

t

µṗµ
t = b(qµ

t )− pµ
t + Σ(qµ

t )Ẇt (4)

qµ
0 = q ∈ Rr, q̇µ

0 = p ∈ Rr.

Let us define R+ = {q1 ∈ R : q1 ≥ 0} and let the configuration space be
D = R+ × Rr−1. In this paper we examine the behavior of the process with
elastic reflection on the boundary ∂D × Rr = (∂R+ × Rr−1)× Rr of the phase
space D×Rr that is governed by (4), i.e. of the Langevin process with reflection,
as µ → 0 when Σ is the unit matrix. We will show that the first component
(the q component) of the Langevin process with reflection at q1 = 0, that is
governed by equation (4), converges in distribution to the diffusion process with
reflection on ∂D that is governed by (2). The method is based on properties of
the Skorohod reflection problem and in techniques developed in [2] and in [3].
In section 2 we define the Langevin process with reflection for general diffusion
matrx Σ with inputs that have bounded first derivatives, in section 3 we describe
the Skorohod reflection problem and in section 4 we consider the limit µ → 0
when the diffusion matrix is the unit matrix. We note here that the limit when
µ → 0 for a general diffusion matrix as above can be examined similarly.

2 Langevin process with reflection and prelimi-
nary results

We begin with the construction of the Langevin process (qµ
t ; pµ

t ) in D × Rr

with elastic reflection on the boundary. Let b = (b1, ..., br)
′

with bj : D →
R, j = 1, .., r and Σ = [σij ] with σij : D → R, i, j = 1, .., r have bounded first
derivatives and Σ be non-degenerate. Let (q, p) ∈ D×Rr be the initial point (we
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assume that (q1)2 + (p1)2 6= 0). Then (qµ
t ; pµ

t ) is the right-continuous Markov
process in D×Rr defined as follows. Consider the following system of S.D.E.’s:

q̇i,µ
t = pi,µ

t

µṗi,µ
t = −pi,µ

t + bi(q
µ
t ) +

r∑

j=1

σij(q
µ
t )Ẇ j

t (5)

qi,µ
0 = qi, pi,µ

0 = pi, i = 1, ..., r.

We define (qµ
t ; pµ

t ) to be the solution to (5) for t ∈ [0, τµ
1 ), where τµ

1 = inf{t >

0 : q1,µ
t = 0}. Then define (qµ

t ; pµ
t ) for t ∈ [τµ

1 , τµ
2 ), where τµ

2 = inf{t > τµ
1 :

qµ
t = 0}, to be the solution of (5) with initial conditions

(qµ
τµ
1
; pµ

τµ
1
) = (0, lim

t↑τµ
1

q2,µ
t , ..., lim

t↑τµ
1

qr,µ
t ;− lim

t↑τµ
1

p1,µ
t , lim

t↑τµ
1

p2,µ
t , ..., lim

t↑τµ
1

pr,µ
t ).

If 0 < τµ
1 < τµ

2 < ... < τµ
k and (qµ

t ; pµ
t ) for t ∈ [0, τµ

k ) are already defined, then
define (qµ

t ; pµ
t ) for t ∈ [τµ

k , τµ
k+1) as solution of (5) with initial conditions

(qµ
τµ

k
; pµ

τµ
k
) = (0, lim

t↑τµ
k

q2,µ
t , ..., lim

t↑τµ
k

qr,µ
t ;− lim

t↑τµ
k

p1,µ
t , lim

t↑τµ
k

p2,µ
t , ..., lim

t↑τµ
k

pr,µ
t )

(see Figure 1 for an illustration).
This construction defines the process (qµ

t ; pµ
t ) in D × Rr for all t ≥ 0. This

follows from Theorem 2.4, which states that the process that we constructed
above does not have infinitely many jumps in any finite time interval [0, T ].
Therefore we have the following definition:

Definition 2.1. We call the above recursively constructed process, the
Langevin process with elastic reflection on the boundary ∂D × Rr. This pro-
cess has jumps on ∂D × Rr and is continuous inside D × Rr.

We will refer to the Langevin process with reflection as l.p.r.(qµ
t ; pµ

t ). More-
over we will denote by (qµ,q

t ; pµ,p
t ) the trajectories of (qµ

t ; pµ
t ) with initial po-

sition (q, p). For easy of notation we also define −x = (−x1, x2, . . . , xr) and
|x| = (|x1|, x2, . . . , xr) for x ∈ Rr.

Below we see an illustration of the construction above in the (q1− p1) phase
space.

Let us give now another construction of the Langevin process with reflection.
Consider the following S.D.E. in R2r:

q̇1,µ
t = p1,µ

t

µq̇1,µ
t = −p1,µ

t + sgn(q1,µ
t )b1(|qµ

t |) +
r∑

j=1

sgn(q1,µ
t )σ1j(|qµ

t |)Ẇ j
t

q1,µ
0 = q1, p1,µ

0 = p1,

q̇i,µ
t = pi,µ

t (6)
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Figure 1: Illustration of the Langevin process with reflection in the (q1 − p1)
phase space

µṗi,µ
t = −pi,µ

t + bi(|qµ
t |) +

r∑

j=1

σij(|qµ
t |)Ẇ j

t

qi,µ
0 = qi, pi,µ

0 = pi, i = 2, ..., r,

where sgn(x) takes two values, 1 if x ≥ 0 and -1 if x < 0.

Lemma 2.2. Equation (6) has a weak solution which is unique in the sense
of probability law.

Proof. The existence follows from the Girsanov’s Theorem on the absolute
continuous change of measures in the space of trajectories (b and Σ are assumed
bounded) and the fact that (6) with b = 0 has a weak solution. The uniqueness
follows from Proposition 5.3.10 of [7].

¤

Using the processes (qµ,q
t ; pµ,p

t ) and (qµ,−q
t ; pµ,−p

t ) we can give another con-
struction of the Langevin process with reflection, as follows. Assume that q1 > 0
and p1 > 0, The graphs of p1,µ,p1

t and p1,µ,−p1

t will be exactly symmetric with re-
spect to zero. The same will be true also for the graphs of q1,µ,q1

t and of q1,µ,−q1

t .
Let τµ

0 = 0, τµ
k = inf{t > τµ

k−1 : q1,µ,q1

t = 0} and (q̂µ
t ; p̂µ

t ) be a stochastic process,
which is defined as follows:

(q̂µ
t ; p̂µ

t ) = (qµ,q
t ; pµ,p

t ) for τµ
2k ≤ t ≤ τµ,−

2k+1

(q̂µ
t ; p̂µ

t ) = (qµ,−q
t ; pµ,−p

t ) for τµ
2k+1 ≤ t ≤ τµ,−

2k+2, k = 0, 1, 2, ... (7)
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Process (q̂µ
t ; p̂µ

t ) is a process with reflection and it can be seen that (q̂µ
t ; p̂µ

t ),
which is the same as (|q1,µ

t |, q2,µ
t , · · · , qr,µ

t ; d
dt |q1,µ

t |, q̇2,µ
t , · · · , q̇r,µ

t ), and l.p.r.(qµ
t ; pµ

t )
coincide.

In the figures below we give an illustration of the construction of (q̂1,µ
t ; p̂1,µ

t ).
The first figure illustrates with thick continuous and dotted lines q̂1,µ

t versus t.
The continuous line is q1,µ,q1

t versus t and the dotted is q1,µ,−q1

t versus t. The
second figure illustrates with thick continuous and dotted lines p̂1,µ

t versus t.
The continuous line is p1,µ,p1

t versus t and the dotted is p1,µ,−p1

t versus t.
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Figure 2: Illustration of the process with reflection

Lemma 2.3. Let T > 0. The Markov process (qµ
t ; pµ

t ) starting at a point
(q, p) different from the origin O = (0, ..., 0; 0, ..., 0), that satisfies system (6),
does not reach the origin O in finite time T, i.e.

P (∃t ≤ T s.t. (qµ
t ; pµ

t ) = O) = 0.

Proof. We easily see that it is actually enough to consider only (q1,µ
t ; p1,µ

t ).
Let δ ¿ 1 be a small number. Define the rectangle ∆ = {(q, p) ∈ R× R : |q| ≤
δ2

2 , |p| ≤ δ
2} and suppose that the trajectory starts from some point outside

the rectangle ∆, say from (q, 0) ∈ R2 \∆. Let also χ∆(x) denote the indicator
function of the set ∆. Then E(q,0)

∫ T

0
χ∆(q1

s , p1
s)ds is the expected value of the

time ,during time [0, T ], that the process (q1
t , p1

t ) with initial point (q, 0) spends
inside the rectangle ∆. If b = 0 and Σ is a matrix with constant entries, (q1

t , p1
t )

is a Gaussian process. One can write down its density explicitly (see equation
(6)), which we denote by ρ(·), and obtain the bound

E(q,0)

∫ T

0

χ∆(q1
s , p1

s)ds =
∫

∆

∫ T

0

ρ(s, (q, 0), y)dsdy ≤ A(T, q)δ3 (8)

where A(T, q) is a constant that depends on T and q. The general case can
be reduced to the case with b = 0 and Σ constant by an absolutely continuous
change of measures in the space of trajectories and by a random time change.

We will establish now a lower bound for the quantity E(q,0)
∫ T

0
χ∆(q1

s , p1
s)ds

under the assumption that the process (q1,µ
t , p1,µ

t ) will reach (0, 0) before time
T with positive probability. This will lead to a contradiction.

Again by Girsanov’s theorem on the absolute continuity of measures in the
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space of trajectories it is enough to consider the solution of the following S.D.E:

q̇1
t = p1

t

ṗ1
t =

1
µ

r∑

j=1

σ1j(q
µ
t )Ẇ

j

t (9)

q1
0 = q1, p1

0 = p1,

where W
j

t =
∫ t

0
sgn(q1,µ

u )dW j
u .

By the self similarity properties of the Wiener process one can find a Wiener

process W 1,∗
t such that

∫ t

0
1
µ

∑r
j=1 σ1j(q

µ
t )Ẇ

j

t = W 1,∗
θ(t), where θ(t) =

∫ t

0
1

µ2 α11(qµ
s )ds

and α11 =
∑r

j,k=1 σ1jσ1k. So
∫ t

0
1
µ

∑r
j=1 σ1j(q

µ
t )Ẇ

j

t can be obtained from W 1,∗
t

via a random time change.
By the law of iterated logarithm we get that for all k ∈ [0, 1] there exists a

to(k) small enough, such that

P (t
1
2+k ≤ |W 1,∗

t | ≤ t
1
2−k for t ∈ [0, to(k)]) ≥ 1− k.

Observe that if t ∈ [0, to(k)] then θ(t) ∈ [0, cto(k)], where c = 1
µ2 supx∈R |α11(x)|.

Define also t
′
o(k) = min{to(k), to(k)

c }. Then with probability very close to 1,
as k → 0, and for all t ∈ [0, t

′
o(k)] it must hold that |p1,µ

t | ≤ c1t
1
2−k and

q1,µ
t =

∫ t

0
p1,µ

s ds ≤ ∫ t

0
c1s

1
2−kds < 2c1t

3
2−k, for a constant c1.

Let τ be the first time, after the time that the Markov process reached the
origin, that it exits from the rectangle ∆, i.e. τ = inf{t > 0 : (q1

t , p1
t ) ∈ R2 \∆}.

Then it follows that

E(q,0)

∫ T

0

χ∆(q1
s , p1

s)ds > E{τ} × P (∃t ≤ T s.t. (q1,µ
t ; p1,µ

t ) = (0, 0)) (10)

Define τq = inf{t > 0 : |q1,µ
t | > δ2

2 } and τp = inf{t > 0 : |p1,µ
t | > δ

2}. By
the above bounds for q1,µ

t and p1,µ
t we get that τq > cqδ

4
3 and τp > cpδ

2, where
cq, cp are some constants independent of δ. So the trajectory exits the rectangle
faster in the direction of p than in the direction of q and the exit time is of order
δ2. Therefore, by this and by (8), we have that

Bδ2 < E(q,0)

∫ T

0

χ∆(q1
s , p1

s)ds ≤ Aδ3, (11)

which cannot hold for constants A and B and small enough δ. So we have a
contradiction and hence it is true that P (∃t ≤ T s.t. (q1,µ

t ; p1µ
t ) = (0, 0)) = 0.

¤

Theorem 2.4. We have the following two statements:
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1. Let T > 0. The Markov process l.p.r.(qµ
t ; pµ

t ) (with arbitrary b) does not
reach the origin O = (0, ..., 0; 0, ..., 0) in finite time T , namely

P (∃t ≤ T s.t. l.p.r.(qµ
t ; pµ

t ) = O) = 0.

2. The sequence of Markov times {τµ
k } converges to +∞ as k → +∞, i.e.

P ( lim
k→+∞

τµ
k = +∞) = 1

Proof. The Langevin process with reflection, l.p.r.(qµ
t ; pµ

t ), coincides at any
time t either with (qµ,q

t ; pµ,p
t ) or with (qµ,−q

t ; pµ,−p
t ). Therefore we have that:

P (∃t ≤ T s.t. l.p.r.(qµ
t ; pµ

t ) = O) ≤ P (∃t ≤ T s.t. (qµ,q
t ; pµ,p

t ) = O)

+ P (∃t ≤ T s.t. (qµ,−q
t ; pµ,−p

t ) = O).

Hence Lemma 2.3 implies that

P (∃t ≤ T s.t. l.p.r.(qµ
t ; pµ

t ) = O) = 0.

Part (ii) is an easy consequence of part (i). It is easy to see that {τµ
k } is

an unbounded, strictly increasing sequence of Markov times. Indeed, if on the
contrary we assume that there exists a N such that τµ

k ≤ N for all k with
positive probability, then the trajectories of l.p.r.(qµ

t ; pµ
t ) will have limit points.

The only possible limit point however is the origin (0, ..., 0; 0, ..., 0). But by part
(i) the probability that within any time T the trajectory will reach the origin
is 0. So {τµ

k } is an unbounded strictly increasing sequence of Markov times.
Therefore we have that P (limk→+∞ τµ

k = +∞) = 1.

¤

Therefore the Langevin process with reflection has only finitely many jumps
in any time interval [0, T ] with probability 1. Hence our definition for the
Langevin process with reflection is correct.

3 The Skorohod reflection problem

The convergence of the Langevin process with reflection that will be presented
in section 4 relies on results about solutions of the Skorohod reflection problem,
proven in [3] and [10].

Let us first recall that D = R+ × Rr−1, ∂D = ∂R+ × Rr−1 and let N(q) be
the set of inward normals at q ∈ ∂D. Denote also by D(R+, D) the space of
cadlág (right continuous with left limits) functions with values in D, endowed
with the Skorohod topology and by B.V.(R+, D) the set of cadlág functions with
bounded variation and values in D.
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Definition 3.1. Let w be a function in D(R+,Rr) such that w(0) ∈ D. We
say that the pair (q, φ) with q ∈ D(R+, D), φ ∈ B.V.(R+,Rr) is a solution to
the Skorohod problem for (D,N, w) if

qt = wt + φt

φt =
∫ t

0

ν(s)d|φ|s, ν(s) ∈ N(qs), d|φ| − a.e.

d|φ|(t : qt ∈ D) = 0,

where |φ| denotes the total variation of φ and is called the local time of the
solution.

The following theorem characterizes the continuity properties of solutions of
the Skorohod reflection problem.

Theorem 3.2. Let W be a compact subset of D(R+,Rr) in the Skorohod
topology such that w(0) ∈ D for every w ∈ W . Moreover let Q be the set of
(q, φ, |φ|, w) ∈ D(R+, D)× B.V.(R+,Rr)× B.V.(R+,R+)×D(R+,Rr) such that
(q, φ) is the solution to the Skorohod problem for (D, N,w) for some w ∈ W

and q is continuous. The set D is convex and so Q is a relatively compact subset
of D(R+,R3r+1) in the Skorohod topology and for every accumulation point of
(q, φ, |φ|, w) in Q we have that (q, φ) is a solution to the Skorohod problem for
(D,N, w).

Proof. This is a special case of theorem 3.2 in [2].

¤

4 Convergence of the Langevin process with re-
flection

In this section we consider the limit of l.p.r.(qµ
t ) as µ → 0 when the diffusion

matrix is the unit matrix. Below we will assume that t ≤ T , where T ia s
positive real number.

Consider the stochastic process (qµ
t ; pµ

t ) in D × Rr, which satisfies the fol-
lowing system of S.D.E.’s:

q̇µ
t = pµ

t

µṗµ
t = −pµ

t + b(qµ
t ) + Ẇt + ν(qµ

t ) · Ψ̇µ
t (12)

qµ
0 = q0, p

µ
0 = p0,

where qµ
t = (q1,µ

t , · · · , qr,µ
t )

′
, pµ

t = (p1,µ
t , · · · , pr,µ

t )
′
, Wt = (W 1

t , · · · ,W r
t )
′
,

ν(q) denotes the unit inward normal to D at q ∈ ∂D, b(q) = (b1(q), ..., br(q))
′

and Ψµ
t = µ

∑
s≤t(−2pµ

s− ·ν(qµ
s ))·χ∂D(qµ

s ). It is easy to see that (12) is pathwise
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equivalent to the Langevin process with reflection in D × Rr of Definition 2.1.
and so it admits a unique weak solution.

We will follow the method introduced in [2]. The main idea is to represent
qµ as the first component of a solution to the Skorohod problem for (D, N, Hµ +
Xµ), where Hµ + Xµ is a semimartingale. The family {Hµ + Xµ} turns out
to be tight and this enables us to use Theorem 3.2 to conclude that the family
{qµ} is tight as well.

We can suppose that there is a unique underlying complete probability space
(Ω,F, P ). Let F̂ denote the the σ−algebra of F of sets with P− measure 0 or 1
and define the filtration

Fµ
t = F̂ ∪ σ((qµ

s ; pµ
s ), s ≤ t).

Lemma 4.1. For every µ the pair of stochastic processes (qµ
· , Φµ

· ), where

Φµ
t =

∫ t

0

ν(qµ
s )dΨµ

t (13)

is an almost surely solution to the Skorohod reflection problem for (D, N, Hµ +
Xµ), where

Hµ
t = q0 + µp0 − µpµ

t

Xµ
t =

∫ t

0

b(qµ
s )ds + Wt (14)

Proof. Consider the integral form of (12). Taking into account that
∫ t

0
pµ

s ds =
qµ
t − q0 and solving for qµ

t we see that:

qµ
t = Hµ

t + Xµ
t + Φµ

t

Then (qµ,Φµ) verifies Definition 3.1 with probability 1.

¤

Lemma 4.2. For every T > 0 we have that limµ→0 E[supt≤T |µpµ
t |2] = 0.

Proof. Assume first that b = 0. Consider equations (12) and apply the Itô
formula for semimartingales to the function f(q, p) = |p|2 for every pair of times
s, t such that 0 ≤ s ≤ t ≤ T . Doing that we get

|pµ
t |2 = |pµ

s |2 −
2
µ

∫ t

s

|pµ
u|2du +

2
µ

∫ t

s

pµ
u · dWu +

1
µ2

r(t− s) (15)

It is interesting to observe that the local time Ψµ
t does not appear above.

This comes from the fact that under elastic reflection |pµ
t |2 = |pµ

t−|2 for every
t > 0.
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Consider now a constant c > 0 and functions x, g ∈ D([0, T ],R) with g(0) = 0
such that:

xt ≤ xs − c

∫ t

s

xudu + gt − gs, 0 ≤ s ≤ t ≤ T (16)

Then one can easily see that

xt ≤ e−ct(x0 + gt) + c

∫ t

0

e−c(t−u)(gt − gu)du, 0 ≤ t ≤ T (17)

By taking expected value to (15) and applying (17) with c = 2
µ , gt = 1

µ2 rt

and xt = |pµ
t |2, we get

E|pµ
t |2 ≤ e−

2
µ t(|p|2 +

1
µ2

rt) +
2
µ3

∫ t

0

e−
2
µ (t−u)r(t− u)du

= e−
2
µ t|p|2 +

r

µ2
(
µ

2
− µ

2
e−

2t
µ ) (18)

This implies the statement of the Lemma for b = 0. The general case can be
reduced to the case with b = 0 by an absolutely continuous change of measures
in the space of trajectories.

¤

The following two theorems are restatements of theorems 3.8.6 and 3.10.2
respectively of [4].

Theorem 4.3. Let {Y n} be a family of processes with sample paths in
D(R+, D). Assuming that for every ε > 0 and rational t ≥ 0 there exist a
compact set Γ(ε, t) ⊂ D such that lim infn P (Y n(t) ∈ Γ(ε, t)) ≥ 1 − ε, then the
following are equivalent

1. {Y n} is relatively compact.

2. For each T > 0, there exists β > 0 and a family of nonnegative random
variables {γn(δ), 0 < δ < 1} satisfying

E(|Y n(t + u)− Y n(t)|β |Fn
t ) ≤ E(γn(δ)|Fn

t ),

for t ∈ [0, T ] and u ∈ [0, δ] and in addition limδ→0 lim supn E(γn(δ)) = 0.

Theorem 4.4. Let {Y n} and Y be processes with sample paths in D(R+, D)
such that Yn converges in distribution to Y . Then Y is almost surely continuous
if and only if

∫∞
0

e−u[sup0≤t≤u |Y n(t)− Y n(t−)| ∧ 1]du ⇒ 0.

The following lemma shows that the family {Hµ + Xµ} is tight in the Sko-
rohod topology.
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Lemma 4.5. The family {Hµ + Xµ} defined in (14) is relatively compact
and all of its accumulation points are continuous.

Proof. It is easily seen that {Xµ} is relatively compact and that all of its
accumulation points are continuous.

Now Lemma 4.2 suggests that:

lim
µ→0

E[sup
t≤T

|Hµ
t |2] ≤ c (19)

lim
µ→0

E[ sup
|t−s|≤δ

|Hµ
t −Hµ

s |] ≤ c1δ, (20)

where c, c1 are positive constants independent of µ.
Chebychev’s inequality and (19) imply that

lim inf
n→∞

P (|H1/n(t)| ≤ λ) ≥ 1− c

λ2
.

Therefore by this and (20), Theorem 4.3. gives us that {Hµ} is relatively
compact. Lastly (20) and Theorem 4.4 implies that all its accumulation points
are continuous.

¤

Theorem 4.6. The family {(qµ, Φµ, Ψµ,Hµ, Xµ)} is relatively compact in
D(R+,R4r+1).

Proof. It follows from Lemma 4.5 and Theorem 3.2.

¤

Now that tightness has been established we will proceed with the identifi-
cation of the stochastic differential equation with reflection that describes the
behavior of qµ as µ → 0.

Consider the following S.D.E. with reflection:

qt = q0 +
∫ t

0

b(qs)ds + Wt + Φt (21)

where Φt =
∫ t

0
ν(qs)d|Φ|s, ν(s) ∈ N(qs) and d|Φ|({t : qt ∈ D}) = 0. It is known

that (21) has a unique weak solution (q, Φ) ([1]).

Theorem 4.7. The family {(qµ, Φµ)} converges in distribution to the unique
solution (q, Φ) of (21).

Proof. By Theorem 4.6. we have that the five-tuple {(qµ, Φµ,Hµ, Xµ,W )}
is relatively compact in D(R+,R5r). Hence it (or a subsequence) converges in
distribution to a stochastic process {(q, Φ,H, X, W )}. By the Skorohod rep-
resentation theorem, one can find a probability space (Ω̃, F̃, P̃ ) and realiza-
tions {(q̃µ, Φ̃µ, H̃µ, W̃µ)} and {(q̃, Φ̃, H̃, X̃, W̃ )} of {(qµ, Φµ,Hµ, Xµ,W )} and
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{(q, Φ,H,X, W )} respectively such that {(q̃µ, Φ̃µ, H̃µ, X̃µ, W̃µ)} converges P̃ -
almost surely to {(q̃, Φ̃, H̃, X̃, W̃ )}. Therefore by Theorem 3.2. (q̃, Φ̃) is a
solution to the Skorohod problem for (D,N, H̃ + X̃) P̃−almost surely.

Now by the convergence of q̃µ to q̃ we get that X̃ must be given by:

X̃t =
∫ t

0

b(q̃s)ds + W̃t

Finally Lemma 4.2 and its proof imply that H̃t = q0.

¤

We would like to note here that one could prove the convergence in distri-
bution of the Langevin procces with reflection to the corresponding diffusion
process with reflection using the Smoluchowski-Kramers approximation. How-
ever the beauty and generality of the results of [3] resulted in using the method
that was presented here.
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