The Smoluchowski-Kramers approximation for the Langevin equation with reflection

Konstantinos Spiliopoulos University of Maryland, College Park USA According to the Smoluchowski-Kramers approximation the solution of the S.D.E.:

$$\mu \ddot{q}_t^{\mu} = b(q_t^{\mu}) - \dot{q}_t^{\mu} + \sigma(q_t^{\mu}) \dot{W}_t \qquad (1)$$

$$q_0^{\mu} = q \in \mathbb{R}^1$$

$$\dot{q}_0^{\mu} = p \in \mathbb{R}^1$$

converges in probability as $\mu \rightarrow 0$ to the solution of the following S.D.E.:

$$\dot{q}_t = b(q_t) + \sigma(q_t) \dot{W}_t$$

$$q_0 = q \in \mathbb{R}^1$$
(2)

More precisely, one can prove that for any $\delta,T>$ 0 and $q,p\in\mathbb{R}^1$,

$$\lim_{\mu \downarrow 0} P(\max_{0 \le t \le T} |q_t^{\mu} - q_t| > \delta) = 0,$$
 (3)

Langevin process with elastic reflection on the boundary

Define the process $(q_t^{\mu}; p_t^{\mu})$ as the solution of the following S.D.E.:

$$\dot{q}_{t}^{\mu} = p_{t}^{\mu} \mu \dot{p}_{t}^{\mu} = -p_{t}^{\mu} + b(q_{t}^{\mu}) + \sigma(q_{t}^{\mu}) \dot{W}_{t}$$

$$q_{0}^{\mu} = q, p_{0}^{\mu} = p,$$

$$(4)$$

for $t \in [0, \tau_1^{\mu})$, where $\tau_1^{\mu} = inf\{t > 0 : q_t^{\mu} = 0\}$.

Then define $(q_t^{\mu}; p_t^{\mu})$ for $t \in [\tau_1^{\mu}, \tau_2^{\mu})$ as the solution of (4) with initial conditions $(q_{\tau_1^{\mu}}^{\mu}; p_{\tau_1^{\mu}}^{\mu}) = (0; -\lim_{t\uparrow\tau_1^{\mu}} p_t^{\mu})$. Here $\tau_2^{\mu} = inf\{t > \tau_1^{\mu} : q_t^{\mu} = 0\}$.

If $0 < \tau_1^{\mu} < \tau_2^{\mu} < ... < \tau_k^{\mu}$ and $(q_t^{\mu}; p_t^{\mu})$ for $t \in [0, \tau_k^{\mu})$ are already defined, then define $(q_t^{\mu}; p_t^{\mu})$ for $t \in [\tau_k^{\mu}, \tau_{k+1})$ as solution of (4) with initial conditions $(q_{\tau_k^{\mu}}^{\mu}; p_{\tau_k^{\mu}}^{\mu}) = (0; -\lim_{t \uparrow \tau_k^{\mu}} p_t^{\mu}).$

This construction defines the process $(q_t^{\mu}; p_t^{\mu})$ in \mathbb{R}^2_+ for all $t \ge 0$. This follows from:

Proposition 1. The strictly increasing sequence of Markov times $\{\tau_k^{\mu}\}$ converges to $+\infty$ as $k \to +\infty$, i.e.

$$P(\lim_{k \to +\infty} \tau_k^{\mu} = +\infty) = 1.$$

We will refer to the Langevin process with reflection as I.p.r.(q_t^{μ} ; p_t^{μ}).

Proposition 2. Let T > 0. The Markov process l.p.r. $(q_t^{\mu}; p_t^{\mu})$ does not reach the origin, O = (0,0), in finite time T, i.e.

 $P(\exists t \leq T \, s.t. \, \mathsf{l.p.r.}(q_t^{\mu}; p_t^{\mu}) = \mathsf{O}) = \mathsf{O}.$

Consider the following S.D.E. in \mathbb{R}^2 :

$$\dot{q}_{t}^{\mu} = p_{t}^{\mu} \mu \dot{p}_{t}^{\mu} = -p_{t}^{\mu} + \operatorname{sgn}(q_{t}^{\mu})b(|q_{t}^{\mu}|) + \operatorname{sgn}(q_{t}^{\mu})\sigma(|q_{t}^{\mu}|)\dot{W}_{t} q_{0}^{\mu} = q, p_{0}^{\mu} = p.$$
(5)

Define:

$$(\hat{q}_{t}^{\mu}; \hat{p}_{t}^{\mu}) = (q_{t}^{\mu, q}; p_{t}^{\mu, p}) \text{ for } \tau_{2k}^{\mu} \leq t \leq \tau_{2k+1}^{\mu, -}$$
(6)
$$(\hat{q}_{t}^{\mu}; \hat{p}_{t}^{\mu}) = (q_{t}^{\mu, -q}; p_{t}^{\mu, -p}) \text{ for } \tau_{2k+1}^{\mu} \leq t \leq \tau_{2k+2}^{\mu, -}$$

(i). $(\hat{q}_t^{\mu}; \hat{p}_t^{\mu})$ is a process with reflection on $\partial \mathbb{R}^2_+$.

(ii). $(\hat{q}_t^{\mu}; \hat{p}_t^{\mu})$ defined by (6) and l.p.r. $(q_t^{\mu}; p_t^{\mu}) = (|q_t^{\mu}|; \frac{d}{dt}|q_t^{\mu}|)$ coincide.

Then Proposition 2. follows from:

Lemma 3. Let T > 0. The process $(q_t^{\mu}; p_t^{\mu})$ does not reach the origin, O = (0,0), in finite time T, i.e.

$$P(\exists t \leq T \, s.t. \, (q_t^{\mu}; p_t^{\mu}) = \mathsf{O}) = \mathsf{O}.$$

Proof. Let $d \ll 1$ be a small number. Define the rectangle $\Delta = \{(q, p) \in \mathbb{R}^1 \times \mathbb{R}^1 : |q| \leq \frac{d^2}{2}, |p| \leq \frac{d}{2}\}$ and suppose that the trajectory starts from some point outside the rectangle Δ , say from $(q, 0) \in \mathbb{R}^2 \setminus \Delta$. If we assume that the process $(q_t^{\mu}; p_t^{\mu})$ will reach (0,0) before time T with positive probability, one can show that

$$Bd^{2} < E^{(q,0)} \int_{0}^{T} \chi_{\Delta}(q_{s}^{\mu}; p_{s}^{\mu}) ds \le Ad^{3},$$
 (7)

which cannot hold for constants A and B and small enough d.

Convergence of the Langevin process with reflection

Consider the following S.D.E. in \mathbb{R}^1 :

$$\dot{q}_t = \operatorname{sgn}(q_t)b(|q_t|) + \operatorname{sgn}(q_t)\sigma(|q_t|)\dot{W}_t$$

$$q_0 = q, \qquad (8)$$

Theorem 4. For the time interval [0,T]I.p.r. $(q^{\mu}) \rightarrow |q_{\cdot}|$, weakly as $\mu \rightarrow 0$. (9) **Proof.** Consider first the following S.D.E.s in \mathbb{R}^2 and \mathbb{R}^1 respectively:

$$\begin{aligned} \dot{\tilde{q}}_t^{\mu} &= \tilde{p}_t^{\mu} \\ \mu \dot{\tilde{p}}_t^{\mu} &= -\tilde{p}_t^{\mu} + \sigma(|\tilde{q}_t^{\mu}|) \dot{\widetilde{W}}_t \\ \tilde{q}_0^{\mu} &= q, \tilde{p}_0^{\mu} = p, \end{aligned}$$

$$(10)$$

and

$$\dot{\widetilde{q}}_t = \sigma(|\widetilde{q}_t|)\dot{\widetilde{W}}_t$$

$$\tilde{q}_0 = q,$$

$$(11)$$

where \widetilde{W}_t is the standard one-dimensional Wiener process.

Lemma 5. The following hold:

(i). For every $\delta > 0$ we have that

$$E\int_0^T \chi_{\{|\widetilde{q}_s| \le \delta\}} ds \le c\delta,$$

where c is a constant.

(ii). $\tilde{q}_t^{\mu} \rightarrow \tilde{q}_t$ uniformly in [0,T] in probability.

Consider now the following S.D.E.'s:

$$\begin{aligned} \dot{\bar{q}}_t^{\mu} &= \bar{p}_t^{\mu} \\ \mu \dot{\bar{p}}_t^{\mu} &= -\bar{p}_t^{\mu} + \operatorname{sgn}(\bar{q}_t^{\mu})b(|\bar{q}_t^{\mu}|) + \sigma(|\bar{q}_t^{\mu}|)\dot{\widetilde{W}}_t \\ \bar{q}_0^{\mu} &= q, \bar{p}_0^{\mu} = p \end{aligned}$$
(12)

and

$$\dot{\overline{q}}_{t} = \operatorname{sgn}(\overline{q}_{t})b(|\overline{q}_{t}|) + \sigma(|\overline{q}_{t}|)\dot{\widetilde{W}}_{t}$$

$$\overline{q}_{0} = q$$
(13)

Then by the Lemma above one can show that:

Lemma 6. For the time interval [0,T], $\overline{q}^{\mu}_{\cdot} \rightarrow \overline{q}_{\cdot}$, weakly as $\mu \rightarrow 0$.

Consider lastly the solution of the following S.D.E.'s:

$$\begin{split} \dot{q}_{t}^{\mu} &= p_{t}^{\mu} \\ \mu \dot{p}_{t}^{\mu} &= -p_{t}^{\mu} + \text{sgn}(q_{t}^{\mu})b(|q_{t}^{\mu}|) + \text{sgn}(q_{t}^{\mu})\sigma(|q_{t}^{\mu}|)\dot{W}_{t} \\ q_{0}^{\mu} &= q, p_{0}^{\mu} = p \end{split}$$
 (14) and

$$\dot{q}_t = \operatorname{sgn}(q_t)b(|q_t|) + \operatorname{sgn}(q_t)\sigma(|q_t|)\dot{W}_t$$

$$q_0 = q, \qquad (15)$$

Now by the observation that $\widetilde{W}_t^{\mu} = \int_0^t \operatorname{sqn}(q_s^{\mu}) dWs$ and $\widetilde{W}_t = \int_0^t \operatorname{sqn}(q_s) dWs$ are again Wiener processes and by Lemma 6, it follows that:

Theorem 7. For the time interval [0,T], $|q^{\mu}_{\cdot}| \rightarrow |q_{\cdot}|$, weakly as $\mu \rightarrow 0$, or otherwise that $\text{l.p.r.}(q^{\mu}_{\cdot}) \rightarrow |q_{\cdot}|$, weakly as $\mu \rightarrow 0$. (16)