The Smoluchowski-Kramers approximation for the Langevin equation with reflection

Konstantinos Spiliopoulos
University of Maryland, College Park USA

According to the Smoluchowski-Kramers approximation the solution of the S.D.E.:

$$
\begin{align*}
\mu \ddot{q}_{t}^{\mu} & =b\left(q_{t}^{\mu}\right)-\dot{q}_{t}^{\mu}+\sigma\left(q_{t}^{\mu}\right) \dot{W}_{t} \tag{1}\\
q_{0}^{\mu} & =q \in \mathbb{R}^{1} \\
\dot{q}_{0}^{\mu} & =p \in \mathbb{R}^{1}
\end{align*}
$$

converges in probability as $\mu \rightarrow 0$ to the solution of the following S.D.E.:

$$
\begin{aligned}
\dot{q}_{t} & =b\left(q_{t}\right)+\sigma\left(q_{t}\right) \dot{W}_{t} \\
q_{0} & =q \in \mathbb{R}^{1}
\end{aligned}
$$

More precisely, one can prove that for any $\delta, T>$ 0 and $q, p \in \mathbb{R}^{1}$,

$$
\begin{equation*}
\lim _{\mu \downarrow 0} P\left(\max _{0 \leq t \leq T}\left|q_{t}^{\mu}-q_{t}\right|>\delta\right)=0, \tag{3}
\end{equation*}
$$

Langevin process with elastic reflection on the boundary

Define the process $\left(q_{t}^{\mu} ; p_{t}^{\mu}\right)$ as the solution of the following S.D.E.:

$$
\begin{align*}
\dot{q}_{t}^{\mu} & =p_{t}^{\mu} \\
\mu \dot{p}_{t}^{\mu} & =-p_{t}^{\mu}+b\left(q_{t}^{\mu}\right)+\sigma\left(q_{t}^{\mu}\right) \dot{W}_{t} \tag{4}\\
q_{0}^{\mu} & =q, p_{0}^{\mu}=p
\end{align*}
$$

for $t \in\left[0, \tau_{1}^{\mu}\right.$), where $\tau_{1}^{\mu}=\inf \left\{t>0: q_{t}^{\mu}=0\right\}$.
Then define $\left(q_{t}^{\mu} ; p_{t}^{\mu}\right)$ for $t \in\left[\tau_{1}^{\mu}, \tau_{2}^{\mu}\right)$ as the soIution of (4) with initial conditions $\left(q_{\tau_{1}^{\mu}}^{\mu} ; p_{\tau_{1}^{\mu}}^{\mu}\right)=$ $\left(0 ;-\lim _{t \uparrow \tau_{1}^{\mu}} p_{t}^{\mu}\right)$. Here $\tau_{2}^{\mu}=\inf \left\{t>\tau_{1}^{\mu}: q_{t}^{\mu}=\right.$ $0\}$.

If $0<\tau_{1}^{\mu}<\tau_{2}^{\mu}<\ldots<\tau_{k}^{\mu}$ and $\left(q_{t}^{\mu} ; p_{t}^{\mu}\right)$ for $t \in$ [$0, \tau_{k}^{\mu}$) are already defined, then define $\left(q_{t}^{\mu} ; p_{t}^{\mu}\right)$ for $t \in\left[\tau_{k}^{\mu}, \tau_{k+1}\right)$ as solution of (4) with initial conditions $\left(q_{\tau_{k}^{\mu}}^{\mu} ; p_{\tau_{k}^{\mu}}^{\mu}\right)=\left(0 ;-\lim _{t \uparrow \tau_{k}^{\mu}} p_{t}^{\mu}\right)$.

This construction defines the process $\left(q_{t}^{\mu} ; p_{t}^{\mu}\right)$ in \mathbb{R}_{+}^{2} for all $t \geq 0$. This follows from:

Proposition 1. The strictly increasing sequence of Markov times $\left\{\tau_{k}^{\mu}\right\}$ converges to $+\infty$ as $k \rightarrow+\infty$, i.e.

$$
P\left(\lim _{k \rightarrow+\infty} \tau_{k}^{\mu}=+\infty\right)=1
$$

We will refer to the Langevin process with reflection as I.p.r. $\left(q_{t}^{\mu} ; p_{t}^{\mu}\right)$.

Proposition 2. Let $T>0$. The Markov process I.p.r. $\left(q_{t}^{\mu} ; p_{t}^{\mu}\right)$ does not reach the origin, $O=(0,0)$, in finite time T, i.e.

$$
P\left(\exists t \leq T \text { s.t.।.p.r. }\left(q_{t}^{\mu} ; p_{t}^{\mu}\right)=\mathrm{O}\right)=0
$$

Consider the following S.D.E. in \mathbb{R}^{2} :

$$
\begin{aligned}
\dot{q}_{t}^{\mu} & =p_{t}^{\mu} \\
\mu \dot{p}_{t}^{\mu} & =-p_{t}^{\mu}+\operatorname{sgn}\left(q_{t}^{\mu}\right) b\left(\left|q_{t}^{\mu}\right|\right)+\operatorname{sgn}\left(q_{t}^{\mu}\right) \sigma\left(\left|q_{t}^{\mu}\right|\right) \dot{W}_{t} \\
q_{0}^{\mu} & =q, p_{0}^{\mu}=p
\end{aligned}
$$

Define:

$$
\begin{equation*}
\left(\widehat{q}_{t}^{\mu} ; \hat{p}_{t}^{\mu}\right)=\left(q_{t}^{\mu, q} ; p_{t}^{\mu, p}\right) \text { for } \tau_{2 k}^{\mu} \leq t \leq \tau_{2 k+1}^{\mu,-} \tag{6}
\end{equation*}
$$

$\left(\widehat{q}_{t}^{\mu} ; \hat{p}_{t}^{\mu}\right)=\left(q_{t}^{\mu,-q} ; p_{t}^{\mu,-p}\right)$ for $\tau_{2 k+1}^{\mu} \leq t \leq \tau_{2 k+2}^{\mu,-}$
(i). $\left(\hat{q}_{t}^{\mu} ; \hat{p}_{t}^{\mu}\right)$ is a process with reflection on $\partial \mathbb{R}_{+}^{2}$.
(ii). $\left(\widehat{q}_{t}^{\mu} ; \hat{p}_{t}^{\mu}\right)$ defined by (6) and I.p.r. $\left(q_{t}^{\mu} ; p_{t}^{\mu}\right)=$ ($\left.\left|q_{t}^{\mu}\right| ; \frac{d}{d t}\left|q_{t}^{\mu}\right|\right)$ coincide.

Then Proposition 2. follows from:

Lemma 3. Let $T>0$. The process $\left(q_{t}^{\mu} ; p_{t}^{\mu}\right)$ does not reach the origin, $O=(0,0)$, in finite time T, i.e.

$$
P\left(\exists t \leq T \text { s.t. }\left(q_{t}^{\mu} ; p_{t}^{\mu}\right)=\mathrm{O}\right)=0
$$

Proof. Let $d \ll 1$ be a small number. Define the rectangle $\Delta=\left\{(q, p) \in \mathbb{R}^{1} \times \mathbb{R}^{1}:|q| \leq\right.$ $\left.\frac{d^{2}}{2},|p| \leq \frac{d}{2}\right\}$ and suppose that the trajectory starts from some point outside the rectangle Δ, say from $(q, 0) \in \mathbb{R}^{2} \backslash \Delta$.

If we assume that the process $\left(q_{t}^{\mu} ; p_{t}^{\mu}\right)$ will reach (0,0) before time T with positive probability, one can show that

$$
\begin{equation*}
B d^{2}<E^{(q, 0)} \int_{0}^{T} \chi_{\Delta}\left(q_{s}^{\mu} ; p_{s}^{\mu}\right) d s \leq A d^{3}, \tag{7}
\end{equation*}
$$

which cannot hold for constants A and B and small enough d.

Convergence of the Langevin process with reflection

Consider the following S.D.E. in \mathbb{R}^{1} :

$$
\begin{align*}
\dot{q}_{t} & =\operatorname{sgn}\left(q_{t}\right) b\left(\left|q_{t}\right|\right)+\operatorname{sgn}\left(q_{t}\right) \sigma\left(\left|q_{t}\right|\right) \dot{W}_{t} \\
q_{0} & =q \tag{8}
\end{align*}
$$

Theorem 4. For the time interval $[0, T]$

$$
\text { I.p.r. }\left(q_{.}^{\mu}\right) \rightarrow|q .|, \text { weakly as } \mu \rightarrow 0
$$

Proof. Consider first the following S.D.E.s in \mathbb{R}^{2} and \mathbb{R}^{1} respectively:

$$
\begin{align*}
\dot{\tilde{q}}_{t}^{\mu} & =\widetilde{p}_{t}^{\mu} \\
\mu \dot{\tilde{p}}_{t}^{\mu} & =-\widetilde{p}_{t}^{\mu}+\sigma\left(\left|\widetilde{q}_{t}^{\mu}\right|\right) \dot{\widetilde{W}}_{t} \tag{10}\\
\tilde{q}_{0}^{\mu} & =q, \widetilde{p}_{0}^{\mu}=p,
\end{align*}
$$

and

$$
\begin{align*}
\dot{\tilde{q}}_{t} & =\sigma\left(\left|\widetilde{q}_{t}\right|\right) \dot{\widetilde{W}}_{t} \tag{11}\\
\widetilde{q}_{0} & =q,
\end{align*}
$$

where \widetilde{W}_{t} is the standard one-dimensional Wiener process.

Lemma 5. The following hold:
(i). For every $\delta>0$ we have that

$$
E \int_{0}^{T} \chi_{\left\{\left|\widetilde{q}_{s}\right| \leq \delta\right\}} d s \leq c \delta,
$$

where c is a constant.
(ii). $\widetilde{q}_{t}^{\mu} \rightarrow \widetilde{q}_{t}$ uniformly in $[0, T]$ in probability.

Consider now the following S.D.E.'s:

$$
\begin{align*}
\dot{q}_{t}^{\mu} & =\bar{p}_{t}^{\mu} \\
\mu \dot{p}_{t}^{\mu} & =-\bar{p}_{t}^{\mu}+\operatorname{sgn}\left(\bar{q}_{t}^{\mu}\right) b\left(\left|\bar{q}_{t}^{\mu}\right|\right)+\sigma\left(\left|\dot{q}_{t}^{\mu}\right|\right) \dot{\widetilde{W}}_{t} \\
\bar{q}_{0}^{\mu} & =q, \bar{p}_{0}^{\mu}=p \tag{12}
\end{align*}
$$

and

$$
\begin{align*}
\dot{\bar{q}}_{t} & =\operatorname{sgn}\left(\bar{q}_{t}\right) b\left(\left|\bar{q}_{t}\right|\right)+\sigma\left(\left|\bar{q}_{t}\right|\right) \dot{\widetilde{W}}_{t} \\
\bar{q}_{0} & =q \tag{13}
\end{align*}
$$

Then by the Lemma above one can show that:

Lemma 6. For the time interval $[0, T], \bar{q}^{\mu} \rightarrow$ \bar{q}., weakly as $\mu \rightarrow 0$.

Consider lastly the solution of the following S.D.E.'s:

$$
\begin{align*}
\dot{q}_{t}^{\mu} & =p_{t}^{\mu} \\
\mu \dot{p}_{t}^{\mu} & =-p_{t}^{\mu}+\operatorname{sgn}\left(q_{t}^{\mu}\right) b\left(\left|q_{t}^{\mu}\right|\right)+\operatorname{sgn}\left(q_{t}^{\mu}\right) \sigma\left(\left|q_{t}^{\mu}\right|\right) \dot{W}_{t} \\
q_{0}^{\mu} & =q, p_{0}^{\mu}=p \tag{14}
\end{align*}
$$

and

$$
\begin{align*}
\dot{q}_{t} & =\operatorname{sgn}\left(q_{t}\right) b\left(\left|q_{t}\right|\right)+\operatorname{sgn}\left(q_{t}\right) \sigma\left(\left|q_{t}\right|\right) \dot{W}_{t} \\
q_{0} & =q, \tag{15}
\end{align*}
$$

Now by the observation that $\widetilde{W}_{t}^{\mu}=\int_{0}^{t} \operatorname{sqn}\left(q_{s}^{\mu}\right) d W s$ and $\widetilde{W}_{t}=\int_{0}^{t} \operatorname{sqn}\left(q_{s}\right) d W s$ are again Wiener processes and by Lemma 6, it follows that:

Theorem 7. For the time interval $[0, T]$,

 $\left|q^{\mu}\right| \rightarrow|q|,$. weakly as $\mu \rightarrow 0$, or otherwise thatI.p.r. $\left(q^{\mu}\right) \rightarrow \mid q$. \mid, weakly as $\mu \rightarrow 0$.

