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ABSTRACT

In this paper, we construct efficient importance sampling Monte Carlo schemes for finite time exit probabilities
in the presence of rest points. We focus on reversible diffusion processes with small noise that have an
asymptotically stable equilibrium point. The main novelty of the work is the inclusion of rest points in the
domain of interest. We motivate the construction of schemes that perform well both asymptotically and
non-asymptotically. We concentrate on the regime where the noise is small and the time horizon is large.
Examples and simulation results are provided.

1 INTRODUCTION

In this paper we develop provably efficient rare event simulation schemes for the estimation of finite time exit
and transition probabilities that involve escape from an equilibrium point. We consider the d-dimensional
process

dXε
t =−∇V (Xε

t )dt +
√

εβdWt , Xε
0 = y, (1)

where V (x) is an appropriately smooth function, β > 0 is a fixed constant, 0 < ε� 1 and Wt is a standard
d−dimensional Wiener process. For L > 0, define AL =

{
x ∈ Rd : V (x) = L

}
and let

D =
{

x ∈ Rd : V (x)≤ L
}
.

Let τε be the time of exit of the process Xε
t from D , i.e.,

τ
ε =

{
t > 0 : Xε

t ∈ Rd \D
}
.

We are interested in developing provably efficient importance sampling schemes for the estimation of
quantities of the form

θ
ε(y) = Py [Xε hits AL before time T ] .

where y is such that Xε
0 = y and 0≤V (y)< L. If V is bounded from below then D contains critical points,

i.e., points xk such that ∇V (xk) = 0 with ∇V (x) 6= 0 for x 6= xk, and estimating θ ε(y) becomes a rare event
simulation problem as ε ↓ 0. This problem is closely related to the estimation of exit times and transition
probabilities for dynamical systems with multiple equilibrium states, i.e., with metastability issues.

It is known in the literature, e.g., (Freidlin and Wentzell 1984, Glasserman and Kou 1995, Glasserman
and Wang 1997, Dupuis and Wang 2004, Dupuis and Wang 2007, Dupuis, Spiliopoulos and Wang 2012,
Dupuis, Spiliopoulos and Zhou 2013) that estimation of such probabilities has several mathematical and
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computational difficulties, in that standard Monte Carlo sampling techniques lead to exponentially large
relative errors as ε gets smaller. As we will discuss, there are additional difficulties particular to the situation
when rest points are in the domain of interest D . Hence the development of provably efficient simulation
methods becomes of interest. This is in particularly relevant when one deals with rough environments, e.g.,
(Dupuis, Spiliopoulos and Wang 2012), where analytic formulas such as Kramers-Eyring are not available.

An underlying reason for the poor performance of standard Monte Carlo methods or for poorly
constructed Monte Carlo schemes when rest points are present is that trajectories tend to spend a lot of time
around stable points before a successful escape, which can be shown to lead to large variance. The situation
is of course more critical when the time interval is long. In this case two exponential scalings come into
play–one indexed by the strength of the noise 1/ε and the other by the length of time T . The majority
of the current accelerated Monte Carlo literature is focused on asymptotic optimality, which is designed
to address the first exponential scaling. However, the literature does not address the problems due to rest
points, and as has been documented in (Dupuis, Spiliopoulos and Zhou 2013, Dupuis and Spiliopoulos
2014, Spiliopoulos 2013 ), this may cause seemingly-reasonable Mont Carlo methods to perform poorly
even though they may be asymptotically optimal. Hence it becomes important to construct accelerated
Monte-Carlo methods that have good performance even before taking the limit as ε ↓ 0.

Based on the theory of subsolutions to the associated Hamilton-Jacobi-Bellman equation (HJB), see
(Dupuis and Wang 2004, Dupuis and Wang 2007), we develop provably-efficient importance sampling
methods for estimating probabilities such as θ ε(y). We focus on the case that D contains a stable equilibrium
point of the system. The schemes constructed are easily implementable in any dimension and have provably
good performance not only asymptotically, i.e., when ε ↓ 0, but also pre-asymptotically. Moreover, the
prelimit behavior does not degrade as the time horizon gets large.

The rest of the paper is organized as follows. In Section 2 we recall the related large deviations and
importance sampling theory and the role of subsolutions to the associated HJB equations. In Section 3 we
present the suggested simulation scheme together with a statement on its performance. In Section 4 we
present numerical examples in one and two dimensions.

2 REVIEW OF RELATED LARGE DEVIATIONS AND IMPORTANCE SAMPLING THEORY

In this section we state assumptions and review the related large deviations and importance sampling theory.
Moreover, we also review the role of subsolutions to the associated HJB equation in the performance of
importance sampling methods.

We assume that V ∈ C 1
(
Rd ;R

)
is bounded with Lipschitz continuous derivative. When rare events

dominate, the standard Monte-Carlo methods perform poorly in the small noise regime. Importance sampling
is an accelerated Monte-Carlo method for variance reduction. To minimize the variance (equivalently second
moment) of the estimator, we simulate the system under a different probability measure chosen so that the
new unbiased estimate has a smaller (and hopefully much smaller) variance.

For example to estimate a quantity such as Ey[e−
1
ε

h(Xε
T )], one generates iid samples Xε

· (i) under P̄ and
uses the importance sampling estimator

1
N

N

∑
i=1

e−
1
ε

h(Xε
T (i))

dP
dP̄

(Xε
· (i)), (2)

where P̄ is any probability measure which is absolutely continuous with respect to the original probability
measure P. If Ē is the expectation under P̄, then the goal is to choose P̄ such that the second moment

Ēy

[
e−

1
ε

h(Xε
T )

dP
dP̄

(Xε
· )

]2
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is minimized. The large deviations rate function for the process Xε
t on [t,T ] is given by, see (Freidlin and

Wentzell 1984), StT (φ) = +∞ for φ /∈A C ([t,T ]) and

StT (φ) =
1

2β

∫ T

t

∣∣φ̇s +∇V (φs)
∣∣2 ds, if φ ∈A C ([t,T ]). (3)

Then, under fairly general conditions, one has the heuristic approximation (made precise by large deviation
theory)

Ey[e−
1
ε

h(Xε
T )]≈ e−

1
ε

inf{S0T (φ)+h(φT ):φ ,φ0=y}, as ε ↓ 0.

Going back to importance sampling, if for a suitable process u : [0,T ]→ Rd we define

dP̄
dP

= e−
1

2ε

∫ T
0 ||u(s)||2ds+ 1√

ε

∫ T
0 〈u(s),dWs〉,

then Girsanov’s theorem implies that under P̄ the dynamics for Xε
t take the form

dXε
t =

[
−∇V (Xε

t )+
√

βu(t)
]

dt +
√

ε
√

βdW̄t , with W̄t =Wt −
1√
ε

∫ t

0
u(ρ)dρ (4)

a P̄-Wiener process.
So, the problem becomes how to choose the control u(t) so that the second moment

Ēy

[
e−

1
ε

h(Xε
T )

dP
dP̄

(Xε
· )

]2

(and hence the variance) is small and perhaps nearly minimized. Once the control u has been chosen, then
one uses the estimator (2), where Xε

· (i) are iid samples generated from P̄ under (4).
It turns out that the selection of a good P̄, equivalently a good control u(t), is related to the HJB

equation with Hamiltonian

H(x, p) = 〈p,−∇V (x)〉− 1
2

β ‖p‖2 .

In particular, let us consider the HJB equation

Ut(t,x)+H(x,∇U(t,x)) = 0 for (t,x) ∈ [0,T )×D , (5)

U(t,x) = h(x) for t ≤ T,x ∈ ∂D , U(T,x) = ∞ for x ∈D . (6)

Then under mild conditions on h it can be shown, see for example (Fleming and Soner 2006, Freidlin
and Wentzell 1984), that for each (t,x) ∈ [0,T )×D

G(t,x) .
= lim

ε↓0

{
−ε lnEt,x

[
e−

1
ε

h(Xε
T )χ{τε≤T}

]}
= inf

φ∈Λ(t,x)
[StT (φ)+h(φ(T ))] ,

where StT (φ) is given by (3), and

Λ(t,x) =
{

φ ∈ C ([t,T ] : Rd) : φ(t) = x,φ(s) ∈D for s ∈ [t,T ],φ(T ) ∈ ∂D
}
.

Here, G is the unique continuous viscosity solution of (5) and (6), see (Fleming and Soner 2006).
Let us now recall the notion of subsolutions.

Definition 1 A function Ū(t,x) : [0,T ]×Rd 7→ R is a classical subsolution to the HJB equation (5) if
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1. Ū is continuously differentiable,
2. Ūt(t,x)+H(x,∇xŪ(t,x))≥ 0 for every (t,x) ∈ [0,T ]×Rd , and
3. Ū(T,x)≤ h(x) for x ∈ Rd .

The connection between subsolutions and performance of importance sampling schemes has been
established in several papers, such as (Dupuis and Wang 2007, Dupuis, Spiliopoulos and Wang 2012). To
be more precise, the following theorem on asymptotic optimality is known.
Theorem 1 [Theorem 4.1 in (Dupuis, Spiliopoulos and Wang 2012)] Let {Xε ,ε > 0} be the unique strong
solution to (1). Consider a bounded and continuous function h : Rd 7→ R. Let Ū(t,x) be a subsolution
according to Definition 1 and define the control ū(t,x) = −

√
β∇xŪ(t,x). Let Xε,u

T solve (8) below with
u(t) = ū(t,Xε

t ). Then

G(t,x)+Ū(t,x)≤ liminf
ε→0

−ε ln Ēt,x[e−
1
ε

h(Xε
T )dP/dP̄]2 ≤ 2G(t,x). (7)

The subsolution property of Ū implies that for every (t,x)∈ [0,T ]×D we have Ū(t,y)≤G(t,y). Hence
the scheme is asymptotically optimal if Ū(t,x) = G(t,x) at the starting point (t,x). Thus, for the purposes
of asymptotic optimality, one should choose subsolutions such that at the point (0,y) 0� Ū(0,y)≤G(0,y),
and value as close to G(0,y) as possible. Note that h can be chosen so that the expectation becomes a
probability of escape or transition,

Let us summarize here the proposed simulation scheme. Let Xε,u be the solution to the SDE

dXε,u
t =

[
−∇V (Xε,u

s )+
√

βu(t)
]

dt +
√

εβdWs (8)

Xε
0 = y

The proposed simulation scheme in order to estimate θ ε(y) .
= Ey

[
e−

1
ε

h(Xε
T )
]

goes as follows.

1. Consider u(t) = ū(t,Xε,u
t ) = −

√
β∇xŪ(t,Xε,u

t ) with Ū an appropriate subsolution as defined in
Definition 1.

2. Consider the estimator

θ̂
ε(y) .

=
1
N

N

∑
j=1

[
e−

1
ε

h(Xε,u
T ( j))Zu

j

]
(9)

where
Zu

j
.
= e−

1
2ε

∫ T
0 ‖ū(t,Xε,u

t ( j))‖2
dt− 1√

ε

∫ T
0 〈ū(t,Xε,u

t ( j)),dWt( j)〉

and (W ( j),Xε,u( j)) is an independent sample generated from (8) with control u(t) = ū
(
t,Xε,u

t ( j)
)
.

We conclude this section with the following remark. We address why following large deviations
optimal paths (which corresponds to using the actual solution of the HJB equation and not a suitable
smooth subsolution) may not be in general a good strategy for importance sampling Monte-Carlo methods.
Remark 2 Obtaining an accurate solution, analytical or numerical, of the HJB equation (5) in high
dimensions is very difficult. However, even if available the solution would not by itself be suitable for
the design of importance sampling schemes for estimating the sorts of escape probabilities we consider
here. The difficulty is because the solution may have a discontinuous derivative in x precisely at the rest
point, and the generalized second derivative is negative definite. The exact solution to the HJB equation
attempts at each time and location to force the simulated trajectory to follow a most likely large deviations
path, i.e., the velocity of an extremal φ ∗t of the variational problem for G(t,x). However, the noise can
cause trajectories to return to a neighborhood of the origin, thereby producing large likelihood ratios. As
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we shall see in the numerical examples of Section 4, using u(t,x) =−
√

β∇G(t,x) to define a change of
measure when ∇G is not sufficiently smooth is not just a theoretical or technical problem, but can lead to
poor performance. Hence, it is important to view this from a global point of view and not local.

The goal of this paper is to construct a subsolution in explicit form that is tailored to work for escape
probabilities and that does not suffer from the shortcomings just mentioned.

3 MAIN RESULTS

In this section, we focus on estimating escape probabilities via importance sampling. We present an explicit
construction of a subsolution Ū(t,x), which is both numerically implementable (i.e., it does not rely on
solving differential equations), and provably efficient both asymptotically and pre-asymptotically.

We are interested in estimating via importance sampling the probability

θ
ε(y) = Py [Xε hits AL before time T ] .

where y is such that Xε
0 = y and 0 ≤ V (y) < L. Moreover, we assume for brevity that V has a critical

point at x0 = 0 such that V (x0) = 0 and ∇V (x0) = 0 with ∇V (x) 6= 0 for all x 6= x0 such that 0≤V (x)< L.
Furthermore, for notational convenience, let us set β = 1.

As it can be easily verified, a global subsolution can be defined in terms of the quasipotential defined
in (Freidlin and Wentzell 1984). In the gradient case that we study, the subsolution takes the explicit form

F1(x) = 2(L−V (x)).

If we set Ū(t,x) = F1(x) and use it to define a global change of measure, we would be essentially
reversing the dynamics under the new probability measure. However, it turns out that it is not optimal to
use u(t,x) =−∇F1(x) as a global change of measure, and the problem is mainly due to the fact that the
rest point x0 is included in the domain of interest D . As it is explained in (Dupuis, Spiliopoulos and Zhou
2013), the mathematical reason for the failure of the quasipotential is that the presence of the rest points
induces a competition, between −1/ε and the length of the simulation T in the prelimit, which implies
that one may need to go to very small values of ε in order to observe good performance. In particular, the
following bound can be derived (see (Dupuis, Spiliopoulos and Zhou 2013))

Ēy

[
e−

1
ε

h(Xε
T )

dP
dP̄

]2

≥ e−
1
ε
C1+C2(T−K).

for some positive constants C1,C2,K > 0.
This lower bound on the second moment indicates that if T is large, one may need to go to very small

values of ε before the logarithmically optimal (in ε) asymptotic performance is observed in any practice
sense. As explained previously, a more detailed analysis must be done in the neighborhood of the rest
point. To illustrate the point with minimal notation, let us assume for the moment that V (x) is symmetric
and quadratic with x ∈ R. In particular, we have V (x) = γ

2 x2 with γ > 0. In this case, we can compute
G(t,x) in closed form. To be specific, we have

G(t,x) = inf
φt=x,V (φT )=L

{
1
2

∫ T

t

∥∥φ̇s +Γφs
∥∥2 ds

}
= inf

x̂∈V−1(L)
γ

(
x̂− xeγ(t−T )

)2

1− e2γ(t−T )
. (10)

The point now to realize is that G(t,x) provides a good change of measure while near the rest point,
whereas the quasipotential F1(x) provides a good change of measure away from the rest point. There are a
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few more issues to deal with though. The first one is that G(t,x) is discontinuous near t = T . The second
one is that we need to put them together in a smooth way that will define a global subsolution.

In order to deal with the discontinuities near t = T , we shall introduce two mollification parameters
t∗ and M that will be appropriately chosen as functions of ε later on. Let us also fix another parameter
L̂ ∈ (0,L]. In the one-dimensional case, it is easy to solve the equation V (x̂) = L̂ and in particular we get

that ±x̂ =±
√

2L̂
γ

. So, instead of using G(t,x) directly, we define

FM
2 (t,x; x̂) = γ

(
x̂− xeγ(t−T )

)2

1
M +1− e2γ(t−T )

In order now to pass smoothly between the F1(x) and FM
2 (t,x; x̂) without violating the subsolution

property, we use the exponential mollification (Dupuis and Wang 2007)

Uδ (t,x) =−δ log
(

e−
1
δ

F1(x)+ e−
1
δ [F

M(t,x;x̂)+F1(x̂)] + e−
1
δ [F

M(t,x;−x̂)+F1(−x̂)]
)

It is easy to see that F1(x̂) = 2(L− L̂) and if L̂ = L, then F1(x̂) = 0.
Then, a provably efficient importance sampling scheme can be constructed, see (Dupuis, Spiliopoulos

and Zhou 2013) for proof and more details, based on the subsolution

Ūδ (t,x) =
{

F1(x), t > T − t∗

Uδ (t,x), t ≤ T − t∗

It turns out that Ūδ (t,x) is a global smooth subsolution which has provably good performance both pre-
asymptotically and asymptotically. The precise optimality bound and its proof guide the choice of the
parameters δ , t∗,M and L̂. Before presenting the theoretical result, let us elaborate a little bit more on the
exponential mollification. The control used for the simulation is

u(t,x) =−∇Ūδ (t,x) =−
[
ρ1(t,x;δ )∇F1(x)+ρ

M,+
2 (t,x;δ )∇FM

2 (t,x, x̂)+ρ
M,−
2 (t,x;δ )∇FM

2 (t,x,−x̂)
]

where the weights ρi are

ρ1(t,x;δ ) =
e−

1
δ

F1(x)

e−
1
δ

FM
2 (t,x;x̂)+ e−

1
δ

FM
2 (t,x,−x̂)+ e−

1
δ

F1(x)
.

and

ρ
M,±
2 (t,x;δ ) =

e−
1
δ

FM
2 (t,x,±x̂)

e−
1
δ

FM
2 (t,x;x̂)+ e−

1
δ

FM
2 (t,x;−x̂)+ e−

1
δ

F1(x)

Note that ρ1(t,x;δ )+ρ
M,+
2 (t,x;δ )+ρ

M,−
2 (t,x;δ ) = 1. A further analysis of this scheme shows that

the weights are such that the corresponding subsolutions dominate in their corresponding area of intended
dominance. To be more precise, for δ small enough, ρ1(t,x;δ ) turns out to be close to zero when x is
close to the rest point x0 = 0 (i.e., FM

2 will dominate there), whereas ρ
M,±
2 (t,x;δ ) turn out to be close to

zero when x is away from the rest point x0 = 0 (i.e., F1 will dominate there).
The precise theorem characterizing the performance of such a scheme is as follows (See Theorem 4.6

of (Dupuis, Spiliopoulos and Zhou 2013) for the proof).

Theorem 3 Let us assume d = 1, δ = 2ε , θ ∈ (2,4), η ∈
[
ε/
(

ε +θ
2L̂
βM

)
,1/4

]
and that η

L̂
M > 12ε .

Consider the scheme constructed in Section 2 with ū(t,x) =−
√

βDŪδ (t,x). Then up to an exponentially
negligible term, we have

−ε log Ēy[e−
1
ε

h(Xε
T )dP/dP̄]2 ≥ 2I1(ε,η ,T, L̂,M)1{T≥t∗}+2I2(ε,T )1{T<t∗},
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where

I1(ε,η ,T, x̂,M) = (1−η)Ūδ (0,0)+
(

log
[

1
x̂

(
x̂M−1/2/2−

√
4εβ 2/γη

)]
∧0
)

ε.

I2(ε,T ) = 2L− γT ε.

Moreover,

Ūδ (0,0)≥ 2L̂/β

1
M +1− e−2γT

+2β
−1(L− L̂)−δ log3.

Several remarks are now relevant.
Remark 4 (Choice of free parameters) Note that even though the bound provided by the theorem appears
to be in a slightly complicated form, it does not degrade as T →∞. This is also reflected in the simulation
data presented in Section 4. An analysis of the bound and of its proof, see (Dupuis, Spiliopoulos and
Zhou 2013), reveals appropriate choices of δ ,M, t∗ as functions of ε . In particular we can set δ = 2ε ,
t∗ ≥−2

γ
log 1

M and M = L̂ε−2κ with κ ∈ (0,1/2). It turns out that the choice of L̂ is not that important and
one can simply pick L̂ = L/2 or even L̂ = L. Then M = M(ε) ↑ ∞ as ε ↓ 0, and uniformly in T the decay
rate (i.e., lower bound of the algorithm as ε ↓ 0) is

2β
−1L+2β

−1L̂
e−2 ˆλT

1− e−2 ˆλT
.

For the convenience of the reader and for purposes of an easy reference we present in Table 1 the suggested
values for (δ , L̂,M, t∗), given the value of the strength of the noise ε > 0.

parameter δ L̂ M t∗

values 2ε O(1) or ε2λ with λ < κ max{ L̂
ε2κ ,4} with κ ∈ (0,1/2) − 2

γ
log 1

M

Table 1: Parameter values for the algorithm based on a given value of ε > 0.

Remark 5 (General non-quadratic potential) In the case of nonlinear dynamics, one can approximate the
potential near the rest point by its quadratic approximation and thus define FM

2 . Because of the design
of the exponential mollification, the algorithm uses F1(x) away from the neighborhood of the rest point,
which is well defined independently of whether one has quadratic potential or not. Near the rest point, the
algorithm uses FM

2 which is a good mollified approximation for G(t,x) when x is close to x0 = 0. It turns
out that the localization error induced by such an approximation is exponentially negligible as ε ↓ 0, see
Theorem 5.7 in (Dupuis, Spiliopoulos and Zhou 2013).
Remark 6 (Multidimensional case) Away from the rest point mostly F1(x) is used, which is given in closed
form in the gradient case for any dimension. Near the rest point, the mollified version to the quadratic
approximation to G(t,x) is used. Hence, even though the details are more elaborate, the algorithm can be
extended to higher dimensions with complexity that is linear in the dimension. This program is carried out
in detail in (Dupuis and Spiliopoulos 2014) and we refer the interested reader there for details.

4 NUMERICAL SIMULATIONS

In this section we present one and two dimensional simulation results to illustrate the points made previously.
For convenience, we set β = 1. In all examples the number of trajectories simulated is N = 107. The
performance measure is relative error per sample, defined by

ρ
ε .
= ρ(θ̂ ε) =

√
Var(θ̂ ε)

θ ε
=

1√
N

√√√√√√ Ē0

[
1{Xε exits [−1,1] before time T}

(
dP
dP̄i

(Xε)
)2
]

(
E0
[
1{Xε exits [−1,1] before time T}

])2 −1. (11)
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The estimated relative error indicates the number of samples required for a given accuracy.
We first start with a very simple one dimensional example by taking V (x) = 1

2 x2. Assume that the
initial point of the process is the equilibrium point, i.e., y = x0 = 0. Also let L = 1. Thus the problem of
interest is to compute the probability of exit from the interval [−1,1] by some given time T , when starting
from y = 0 and with some level of noise ε .

We first present in Table 2 estimated values of the probability of interest for different combinations of
(ε,T ). The values have been obtained using the suggested algorithm. We note that the values range from
probabilities of order O(10−1) to probabilities of the order of O(10−10).

ε | T 1.5 2.5 5 7 10 14 18 23
0.16 2.2e−03 6.6e−03 1.8e−02 2.7e−02 4.0e−02 5.7e−02 7.4e−02 9.5e−02
0.13 5.1e−04 1.6e−03 4.6e−03 6.9e−03 1.1e−02 1.5e−02 2.0e−02 2.6e−02
0.11 1.1e−04 3.9e−04 1.2e−03 1.8e−03 2.8e−03 4.1e−03 5.4e−03 7.0e−03
0.09 1.3e−05 5.2e−05 1.7e−04 2.6e−04 4.1e−04 5.9e−04 7.8e−04 1.0e−03
0.07 4.3e−07 2.2e−06 7.6e−06 1.2e−05 1.9e−05 2.8e−05 3.7e−05 4.8e−05
0.05 9.7e−10 6.9e−09 2.8e−08 4.4e−08 7.0e−08 1.1e−07 1.4e−07 1.8e−07

Table 2: Estimated values for different pairs (ε,T ). L̂ = 1.

In Table 3 we present relative errors per sample when the subsolution based on just the quasipotential
is used as a global change of measure, i.e., when the control is u(t,x) = −F ′1(x) = 2x. Note that for T
small and T large the performance of the algorithm is bad uniformly in the size of the noise ε . Dashes
indicate that no single trajectory was successful for the particular pair (ε,T ).

ε | T 0.25 0.5 1 1.5 2.5 10 14 18
0.16 253 10 2 1 1 10 48 139
0.13 748 16 3 1 1 9 48 378
0.11 1594 26 3 1 1 10 42 272
0.09 − 49 4 2 1 9 43 357
0.07 − 127 5 2 1 8 47 251
0.05 − 714 8 2 1 8 42 145

Table 3: Using the subsolution based on quasipotential throughout. Relative errors per sample for different
pairs (ε,T ).

In Table 4, we present relative errors per sample, where the algorithm being used is based on using the
actual solution to the HJB equation as a global change of measure. Namely, we use the change of measure

that is based on the control u(t,x) =−Gx(t,x), where G(t,x) = infx̂∈V−1(1)
(x̂−xe(t−T ))

2

1−e2(t−T ) . We notice that even
though the behavior is good when T is small, when T gets large the algorithm deteriorates uniformly in
the value of ε .

ε | T 0.25 0.5 1 1.5 2.5 10 14 18
0.16 3 3 1 1 1 10 55 265
0.13 4 2 1 1 1 9 51 394
0.11 3 2 2 1 1 9 44 177
0.09 3 3 2 1 1 9 43 314
0.07 3 3 2 2 1 9 67 520
0.05 4 2 2 2 1 8 50 278

Table 4: Using the subsolution based on the explicit solution to the ε = 0 HJB equation. Relative errors
per sample for different pairs (ε,T ).
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Then, in Table 5 we investigate the numerical performance of the suggested algorithm which correctly
balances out between F1(x) and FM

2 (t,x) as described previously. It is clear that the improvement is
noticeable and it is uniform across all values of ε and T .

ε | T 2.5 5 7 10 14 18 23
0.16 1.5 1.1 0.8 0.7 0.7 0.7 0.9
0.13 1.7 1.2 1.0 0.8 0.7 0.7 0.8
0.11 1.8 1.4 1.2 0.9 0.8 0.7 0.8
0.09 2.0 1.6 1.3 1.1 0.9 0.8 0.8
0.07 2.2 1.9 1.6 1.3 1.1 1.0 0.9
0.05 2.4 2.5 2.1 1.7 1.5 1.3 1.1

Table 5: Relative errors per sample for different pairs (ε,T ) when exponential mollification is being used.
M = 2√

ε
and L̂ = 1.

Next we consider a two-dimensional nonlinear example. We consider the potential function

V (x,y) = (x2−1)2 +
1
2
(3y+ x2−1)2,

with the exit level L = 1/2. This potential has two stable points at (−1,0) and at (1,0). We set the initial
point of the process to be one of them, i.e., y = x0 = (−1,0). By linearizing the dynamics around the
equilibrium point, we can apply the algorithm presented. The estimated probabilities of exit by time T
from the level set of the potential L = 1/2 are given in the Table 6.

ε | T 1 2 3 4 6 8 10 12 14
0.06 9.63e−06 2.23e−05 3.51e−05 4.79e−05 7.33e−05 9.89e−05 1.24e−04 1.51e−04 1.94e−04
0.05 3.93e−07 9.34e−07 1.47e−06 2.00e−06 3.08e−06 4.17e−06 5.27e−06 6.36e−06 7.39e−06
0.04 3.14e−09 7.57e−09 1.20e−08 1.64e−08 2.52e−08 3.41e−08 4.31e−08 5.18e−08 6.06e−08
0.03 9.38e−13 2.30e−12 3.68e−12 5.04e−12 7.79e−12 1.06e−11 1.32e−11 1.61e−11 1.88e−11
0.02 7.34e−20 1.84e−19 2.99e−19 4.13e−19 6.44e−19 8.74e−19 1.10e−19 1.32e−18 1.56e−18

Table 6: Estimated probability values for different pairs (ε,T ) using the exponential mollification with
M = L̂ε−0.5 and L̂ = L.

Relative errors when the quasipotential is used as a global change of measure throughout are given in
Table 7. Large relative errors occurs for all pairs of values (ε,T ).

ε | T 1 2 3 4 6 8 10 12 14
0.06 415 1472 249 209 164 320 354 451 388
0.05 196 590 105 127 366 181 186 155 293
0.04 309 918 157 181 339 313 246 207 109
0.03 144 614 159 1302 315 1438 126 368 132
0.02 368 216 493 338 110 639 247 798 966

Table 7: Estimated relative errors per sample for different pairs (ε,T ) using quasipotential.

Lastly, we present in Table 8 relative errors per sample for different pairs of (ε,T ) using the exponential
mollification. It is clear that the performance has been dramatically improved. Note that some approximation
error due to localization is expected. Notice also that as T gets large and ε gets small the performance of
the algorithm gets better, as theory indicates, even though the performance is good even for larger values
of ε , i.e., non-asymptotically.

We conclude by mentioning that the large relative error values of Tables 3, 4 and 7, do not just imply
that one would need so many more times the number of trajectories to achieve the same level of accuracy
given by the exponential mollification. These large values imply that the simulation data are all-together
unreliable, even though those data was generated using asymptotically nearly optimal schemes.
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ε | T 1 2 3 4 6 8 10 12 14
0.06 3 3 2 3 5 7 8 11 13
0.05 4 3 3 3 3 4 5 6 8
0.04 7 4 4 3 3 3 3 4 4
0.03 12 7 5 5 4 3 3 3 3
0.02 23 16 14 12 12 9 8 7 5

Table 8: Estimated relative errors per sample for different pairs (ε,T ) using the exponential mollification
with M = L̂ε−0.5 and L̂ = L.

ACKNOWLEDGMENTS

Research of P.D. supported in part by the National Science Foundation (DMS-1317199) and the Air Force
Office of Scientific Research (FA9550-12-1-0399). K.S. was partially supported by the National Science
Foundation, NSF-DMS 1312124.

REFERENCES

Dupuis P., Spiliopoulos K., and Wang H. 2012. “Importance sampling for multiscale diffusions”, SIAM J.
Multiscale Model. and Simul. 10:1–27.

Dupuis P., Spiliopoulos K., and Zhou X., 2014. “Escaping from an Attractor: Importance Sampling and
Rest Points, Part I”, Annals of Applied Probability, accepted subject to minor revision.

Dupuis P., and Spiliopoulos K. , 2014. “Escaping from an Attractor: Importance Sampling and Rest Points,
Part II”, preprint.

Dupuis P., and Wang H. 2004. “Importance sampling, large deviations and differential games”. Stochastics
and Stochastics Reports 76: 481-508.

Dupuis P., and Wang H. 2007. “Subsolutions of an Isaacs equation and efficient schemes of importance
sampling“. Mathematics of Operations Research, 32 (3): 723-757.

Fleming W.H., and Soner H.M. 2006. Controlled Markov Processes and Viscosity Solutions, Springer, 2nd
Ed.

Freidlin M. I. and Wentzell A. D. 1984. Random Perturbations of Dynamical Systems, Springer-Verlag,
New York, 2nd Ed.

Glasserman P., and Kou S., 1995. “Analysis of an importance sampling estimator for tandem queues” ACM
Trans. Modeling Comp. Simulation, 4:22–42.

Glasserman P., and Wang Y., 1997, “Counter examples in importance sampling for large deviations
probabilities” Ann. Appl. Prob., 7:731–746.

Spiliopoulos K., 2013. “Non-asymptotic performance analysis of importance sampling schemes for small
noise diffusions”, submitted.

AUTHOR BIOGRAPHIES

PAUL DUPUIS is Professor in the Division of Applied Mathematics at Brown University. He received a
B.Sc. degree from Brown University in Applied Mathematics, an M.Sc. degree from Northwestern Univer-
sity in Engineering and Applied Mathematics, and a Ph.D. from Brown University in Applied Mathematics.
His email is dupuis@dam.brown.edu.

KONSTANTINOS SPILIOPOULOS is an Assistant Professor at the Department of Mathematics and
Statistics at Boston University. He received his undergraduate diploma in Applied Mathematics and Physical
Sciences from National Technical University of Athens in Greece and Ph.D. in Mathematical Statistics
from University of Maryland at College Park in USA. His e-mail is kspiliop@math.bu.edu.


	INTRODUCTION
	REVIEW OF RELATED LARGE DEVIATIONS AND IMPORTANCE SAMPLING THEORY
	MAIN RESULTS
	NUMERICAL SIMULATIONS

