MATH 225C: Multivariate Calculus

Spring 2017 Syllabus MWF 11:15-12:05, CAS 224 http://math.bu.edu/people/lau/Lau/Teaching.html

Instructor:	Siu-Cheong Lau	Teaching fellow:	Roderic Guigo
Office:	MCS 230	Office:	MCS 250
Email:	lau@math.bu.edu	Email:	rguigo@bu.edu
Office hours:	Mon, Thu 2:30-4	Office hours:	Wed 1:30-2:30, Fri 11-12

Grading:

Homework	Collected in discussion section every week	20%
First mid-term test	February 15 in class	25%
Second mid-term test	April 5 in class	25%
Final exam	May 12 12:30-2:30 at COM 101	30%

Textbook:

Thomas — *Calculus 13th edition 2014, Chapter 12 – 16, ISBN 1323006982.* Purchased from <u>www.mypearsonstore.com</u>. Discount code: terriers

Lecture and discussion:

You are strongly encouraged to attend both. **Discussion Sections:** Thursday 12:30-1:20 3:35-4:25 Friday 9:05-9:55 10:10-11

Homework:

You must turn in physical HW, collected every week (except the first week) at the end of your discussion section.

If you are unable to attend discussion, you may put your HW in your TF's mailbox in the main math office (MCS 142) *before* the beginning of your discussion section.

Late assignments will not be accepted.

Please write down your name, BU ID, and discussion section clearly at the top of the front page of each assignment.

The assignments will be posted on the course webpage and worth 10 points each:

• 4 points for effort

• 6 points for correctly answering three selected problems (2 points each)

If you make a concerted attempt at each problem, you will get all 4 effort points. You will not be told in advance which three problems will be selected.

You are encouraged to work together on the HW, but your write-ups must be your own. Identical HW could be considered plagiarism.

Your lowest two HW grades will be dropped.

MyMathLab <u>www.pearsonmylabandmastering.com</u>:

You must turn in physical HW. Assignments in MyMathLab do not count in grading. Course ID for login: lau61037 We may use **Learning Catalytics** (accessed from your MyMathLab homepage) in class. Please bring your own **laptop** (or smart phone that can access Learning Catalytics).

In-class tests and Final Exam:

You cannot use book, note, or calculator in tests and the final exam.

I do not give make-up tests unless you have a legitimate excuse, such as a serious illness or family emergency, and a written excuse. If possible, please notify me in advance. **University policy states that you must take the final exam at the scheduled time.**

If you feel that your in-class test or final exam was incorrectly graded, you may submit it to me for regrading within one week of receiving it.

We are pleased to help:

- Come to my or your TF's office hours, or email me or your TF.
- Go to the tutoring room, MCS B24, to get help from a graduate student. The full schedule is at

http://www.bu.edu/math/undergraduate/resources/tutoring-room-schedule/

• Get free peer tutoring from the Educational Research Center. <u>http://www.bu.edu/erc/tutoring/</u>

	Monday	Wednesday	Friday
Jan 19–20	Winter	Coordinates and distance	
Jan 23–27	Vectors and dot product	Cross product	Lines and planes
Jan 30 – Feb 3	Level surfaces; quadrics	Curves	Arc length
Feb 6–10	Curvature and torsion	Polar frame	Parametric surfaces
Feb 13–17	Review	1st mid-term	Continuous functions
Feb 20–24	(Feb 21) Partial derivatives	PDE	Chain rule
Feb 27 – Mar 3	Directional derivative	Tangent plane	Critical points
Mar 6–10	Spring recess		
Mar 13–17	Lagrange multipliers	Global extrema	Taylor's formula
Mar 20–24	Double intergrals	Polar integration	Area of curved surfaces
Mar 27–31	Review	2nd mid-term	Triple integrals
Apr 3–7	Substitution	Integration of functions on curves and surfaces	Vector fields
Apr 10–14	Line integrals of vector fields	Line integral theorem	Conservative fields
Apr 17–21	Holiday	Greens theorem	Curl, divergence and flux
Apr 24–28	Surface integrals of vector fields	Stokes theorem	Divergence theorem
May 1–3	Fundamental theorem	Review	