MA225C Mock Final Exam

Name: \qquad (1 mark)

TRUE/FALSE. Write ' T ' if the statement is true and ' F ' if the statement is false. (11 marks)

1) Let $f(x, y, z)$ be a function. The line integral of $\operatorname{curl}(\nabla f))$ around any circle is zero.
2) If the line integral of a vector field along the closed loop $x^{2}+y^{2}=1, z=0$ is zero then the vector field is conservative.
3) The flux of the curl of a vector field through the disc $x^{2}+y^{2} \leq 1, z=0$ is always zero.
4) If a function $f(x, y)$ has a critical point at $(0,0)$ then $\operatorname{div}(\operatorname{grad}(f))(0,0)$ is zero.
5) The flux of a vector field F with length $|F|=1$ through a triangular surface S can not be larger than the surface area of S.
6) The arc length of the boundary of a surface is independent of the parametrization of the surface.
7) The gradient of the divergence of the curl of a vector field is constantly zero.
8) The points that satisfy $\theta=\pi / 4$ and $\varphi=\pi / 4$ in spherical coordinates form a surface which is part of a cone.
9) For any vector field F and any curve r parametrized on [a, b] we have $\int_{a}^{b} F(r(t)) \cdot r^{\prime}(t) d t=F(r(b))-F(r(a))$.
10) The solid enclosed by the surfaces $z=2-\sqrt{x^{2}+y^{2}}$ and $z=\sqrt{x^{2}+y^{2}}$ has the volume $\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{2-r} d z d r d \theta$
11) The line integral of $F(x, y)=(-y, x)$ along the (counterclockwise oriented) boundary of a region R is twice the area of R.
12) \qquad
13) \qquad
14) \qquad
15) \qquad
16) \qquad
17) \qquad
18) \qquad
19) \qquad
20) \qquad
21) \qquad
22) \qquad

SHORT QUESTIONS. (18 marks)

12) Check whether the vector field
$\mathbf{F}=\left(\frac{10 x^{9} y^{10}}{z^{3}}\right) i+\left(\frac{10 x^{10} y^{9}}{z^{3}}\right) j-\left(\frac{3 x^{10} y^{10}}{z^{4}}\right) \mathbf{k}$
is conservative or not.
13) Find the potential function for the vector field
$\mathbf{F}=\frac{1}{\mathrm{Z}} \mathbf{i}-4 \mathbf{j}-\frac{\mathrm{x}}{\mathrm{z}^{2}} \mathbf{k}$.
Compute the path integral
$\int_{C} F \cdot d r$
for the curve C parametrized by $(\cos t, \sin t, t)$ for $2 \pi \leq t \leq 3 \pi$.
14) Find a parametrization of the surface S which is the portion of the cone $\frac{x^{2}}{25}+\frac{y^{2}}{25}=\frac{z^{2}}{16}$ that lies between $z=$ 2 and $z=3$. Use it to find its surface area.
15) Find the path integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=-\sqrt{x^{2}+y^{2}} \mathbf{i}+\sqrt{x^{2}+y^{2}} \mathbf{j}$ and C is the (counterclockwise) boundary of the region defined by the polar coordinate inequalities $6 \leq r \leq 8$ and $0 \leq \theta \leq \pi$.
16) Find the flux $\int_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{N}$ where S is the surface parametrized by $\mathbf{r}(r, \theta)=\left(r \cos \theta, r \sin \theta,\left(4-r^{2}\right)\right\rangle$, for 0 $\leq \mathrm{r} \leq 2$ and $0 \leq \theta \leq 2 \pi$, and $\mathbf{F}=3 \mathrm{y} \mathbf{i}+5 \mathrm{z} \mathbf{j}-2 \mathrm{x} \mathbf{k}$.
17) Find the flux $\int_{S} F \cdot d \mathbf{N}$ where the surface S is the boundary of the solid cube cut by the coordinate planes and the planes $x=1, y=1$, and $z=1$, and $F=\langle z, x y, z y\rangle$.
