MA225C Mock Test 1

Name: _____

TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false.

1) The vector (1/5, 2/5, 2/5) is a unit vector.		1)
2) Two vectors \vec{v} and \vec{w} are parallel if $\vec{v} \cdot \vec{w} = \vec{0}$.		2)
3) The surface $z = x^2 + y^2$ is an ellipsoid.		3)
4) If two planes $ax + by + cz = d$ and $Ax + By + Cz = D$ are parallel, hen $a = A, b = B$, and $c = C$.		4)
5) Every point on the parametric curve $r(t) = (t,t^2,-t)$ lies on the surface $xz + y = 0$.		5)
6) $\operatorname{Proj}_{U} \stackrel{\stackrel{\rightarrow}{\rightarrow}}_{V} \stackrel{\stackrel{\rightarrow}{\rightarrow}}_{V} \stackrel{\stackrel{\rightarrow}{u}$ for all vectors $\stackrel{\rightarrow}{u}$ and $\stackrel{\rightarrow}{V}$.		6)
7) The curvature of the curves $r(t) = (t, t^2, t^3)$ and $R(t) = (t^2, t^4, t^6)$ are the same at t=1.		7)
8) The volume of the parallelepiped spanned by the vectors $(1,0,0)$, $(0,2,0)$ and $(1,1,1)$ is 2.		8)
9) The vector $\langle -5,4,1 \rangle$ is parallel to the plane $-5x + 4y + z = 2$.		9)
10) There are vectors \vec{u} and \vec{v} such that $\vec{u} \cdot \vec{v} = \ \vec{u} \times \vec{v}\ $.		10)
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.		
The position vector of a particle is r(t). Find the requested vector.		
11) The velocity at t = 1 for r(t) = (2 - 4t ²)i + (6t + 5)j - e ^{-6t} k		11)
A) $v(1) = 8i + 6j + 6e^{-6}k$	B) $v(1) = -8i + 6j + 6e^{-6}k$	
C) $v(1) = -4i + 6j + 6e^{-6}k$	D) $v(1) = -8i + 6j - 6e^{-6}k$	
12) The acceleration at t = 1 for $r(t) = (3t - 2t^4)i + (2 - t)j + (6t^2 - 7t)k$ A) $a(1) = 24i + 12k$ B) $a(1) = -6i + 12k$ C) $a(1) = -24i - j + 12k$ D) $a(1) = -24i + 12k$		12)
For the smooth curve $r(t)$, find the parametric equations for the line that is tangent to r at the given parameter value $t = t_0$.		
13) r(t) = (6 sin t)i - (9 cos 3t)j +e ^{-10t} k ; t ₀ = 0		13)

A) x = 6t, y = -9, z = 1 - 10tB) x = 6t, y = 9, z = 1 + tC) x = 6, y = -9t, z = -10 + tD) x = 6t, y = -9, z = 1 - t

Find the arc length parameter along the curve from the point where t = 0 by evaluating s = $\int_0^t |v(\tau)| d\tau$.

14)
$$r(t) = (4\cos t)i + (4\sin t)j + 5tk$$

A) $\sqrt{57}t$
B) $\sqrt{66}t$
C) $\frac{\sqrt{41}}{2}t$
D) $\sqrt{41}t$

14) _____

SHORT QUESTIONS.

15) Parametrize the following surfaces.

a)
$$x^{2} + y^{2} = z^{2} + 1$$
.
b) $x^{2} + 2y^{2} + 4z^{2} = 4$.
c) $z = e^{y}$ (sin x).
d) $x + y + z = 4$.