Name: \qquad

TRUE/FALSE. Write ' T ' if the statement is true and ' F ' if the statement is false.

1) The vector $\langle 1 / 5,2 / 5,25\rangle$ is a unit vector.
2)
3) \qquad
4) \qquad
5) \qquad
6) \qquad
7) \qquad
8) \qquad
9) \qquad
10) \qquad
11) \qquad

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
The position vector of a particle is $r(t)$. Find the requested vector.
11) The velocity at $t=1$ for $\mathbf{r}(t)=\left(2-4 t^{2}\right) \mathbf{i}+(6 t+5) \mathbf{j}-e^{-6 t} \mathbf{k}$
11) \qquad
A) $\mathbf{v}(1)=8 \mathbf{i}+6 \mathbf{j}+6 e^{-6} \mathbf{k}$
B) $\mathbf{v}(1)=-8 \mathbf{i}+6 \mathbf{j}+6 e^{-6} \mathbf{k}$
C) $\mathbf{v}(1)=-4 \mathbf{i}+6 \mathbf{j}+6 e^{-6} \mathbf{k}$
D) $\mathbf{v}(1)=-8 \mathbf{i}+6 \mathbf{j}-6 e^{-6} \mathbf{k}$
12) The acceleration at $t=1$ for $\mathbf{r}(t)=\left(3 t-2 t^{4}\right) \mathbf{i}+(2-t) \mathbf{j}+\left(6 t^{2}-7 t\right) \mathbf{k}$
12)
A) $\mathbf{a}(1)=24 \mathbf{i}+12 \mathbf{k}$
B) $\mathbf{a}(1)=-6 \mathbf{i}+12 \mathbf{k}$
C) $\mathbf{a}(1)=-24 \mathbf{i}-\mathbf{j}+12 \mathbf{k}$
D) $\mathbf{a}(1)=-24 \mathbf{i}+12 \mathbf{k}$

For the smooth curve $r(t)$, find the parametric equations for the line that is tangent to r at the given parameter value $t=t_{0}$.
13) $\mathbf{r}(\mathrm{t})=(6 \sin \mathrm{t}) \mathbf{i}-(9 \cos 3 \mathrm{t}) \mathbf{j}+\mathrm{e}^{-10 t_{k}} ; \mathrm{t}_{\mathrm{O}}=0$
13)
A) $x=6 t, y=-9, z=1-10 t$
B) $x=6 t, y=9, z=1+t$
C) $x=6, y=-9 t, z=-10+t$
D) $x=6 t, y=-9, z=1-t$

Find the arc length parameter along the curve from the point where $t=0$ by evaluating $s=\int_{0}^{t}|v(\tau)| d \tau$.
14) $\mathbf{r}(\mathrm{t})=(4 \cos \mathrm{t}) \mathbf{i}+(4 \sin \mathrm{t}) \mathbf{j}+5 \mathrm{tk}$
14)
A) $\sqrt{57} \mathrm{t}$
B) $\sqrt{66} t$
C) $\frac{\sqrt{41}}{2} \mathrm{t}$
D) $\sqrt{41} t$

SHORT QUESTIONS.

15) Parametrize the following surfaces.
a) $x^{2}+y^{2}=z^{2}+1$.
b) $x^{2}+2 y^{2}+4 z^{2}=4$.
c) $z=e y(\sin x)$.
d) $x+y+z=4$.
