Polar, Cylindrical, and Spherical Coordinates

1. (a) In polar coordinates, what shapes are described by $r=k$ and $\theta=k$, where k is a constant?
(b) Draw $r=0, r=\frac{2 \pi}{3}, r=\frac{4 \pi}{3}, r=2 \pi, \theta=0, \theta=\frac{2 \pi}{3}$, and $\theta=\frac{4 \pi}{3}$ on the following axes. (Why can't we draw $\theta=2 \pi$?)

(c) On the axes in (b), sketch the curve with polar equation $r=\theta$.
2. In cylindrical coordinates, what shapes are described by $r=k, \theta=k$, and $z=k$, where k is a constant?
3. In spherical coordinates, what shapes are described by $\rho=k, \theta=k$, and $\phi=k$, where k is a constant?
4. (a) In cylindrical coordinates, let's look at the surface $r=5$. What does $z=k$ look like on this surface? How about $\theta=k$? (k is a constant.)
(b) In spherical coordinates, let's look at the surface $\rho=5$. What does $\theta=k$ look like on this surface? How about $\phi=k$?
5. Write the point $(x, y, z)=(\sqrt{6},-\sqrt{6},-2)$ in cylindrical and spherical coordinates.
6. Consider the surface whose equation in cylindrical coordinates is $z=r$. How could you describe this surface in Cartesian coordinates? Spherical? Can you sketch the surface?
7. Most of the time, a single equation like $2 x+3 y+4 z=5$ in Cartesian coordinates or $\rho=1$ in spherical coordinates defines a surface. Can you find examples in Cartesian, cylindrical, and spherical coordinates where this is not the case?
