MA 225 MULTIVARIABLE CALCULUS APPLICATION OF DOT PRODUCT TO AI

SIU-CHEONG LAU

Deep learning is a crucial technique in Artificial Intelligence. It is based on a model of the neural network in human brain.

A neuron is modeled by the following multivariable function. Let's say the neuron receiving three input signals $x_{1}, x_{2}, x_{3} \in \mathbb{R}$. We group these as a vector

$$
\vec{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} .
$$

The neuron assigns a fixed 'weight' to each input, representing the relative importance of the input. The weights are grouped into a vector $\vec{w} \in \mathbb{R}^{3}$. The neuron also has a 'threshold value' $b \in \mathbb{R}$. Then the neuron applies the dot product and compares with the threshold value:

$$
y=\vec{w} \cdot \vec{x}-b .
$$

(Figure 1a.)
Question A: Let $\vec{w}=(0.2,0.3,0.5)$ and $b=0.1$. What is the output y for the input $x_{1}=1, x_{2}=0, x_{3}=1$?

A neural network consists of several layers of neurons. Let's consider one layer. Suppose the layer has two neurons, which just perform the operation

$$
\vec{y}=\left(y_{1}, y_{2}\right)=\left(\vec{w}_{1} \cdot \vec{x}-b_{1}, \vec{w}_{2} \cdot \vec{x}-b_{2}\right) .
$$

(Figure 1b.)
Question B: Suppose $\vec{w}_{1}=(0.2,0.3,0.5)$ and $\vec{w}_{2}=(0,0.6,0.4), b_{1}=0.1, b_{2}=0.6$. What is the output \vec{y} for the input $x_{1}=1, x_{2}=0, x_{3}=1$?

Thus such a layer of neuron is simply a linear projection $\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$.
In the end of the operation, each neuron applies a function to the value y, say the 'sigmoid function'

$$
\sigma(y)=\frac{1}{1+e^{-10 y}}
$$

which is an approximation of a step function (Figure 2).

Figure 2. The 'sigmoid function'.
Question C: For the above layer of neurons, what is the final output $\vec{z}=\left(\sigma\left(y_{1}\right), \sigma\left(y_{2}\right)\right)$? Please give the answer up to two decimal places by using a calculator.

The art of self-learning (by the neurons) is to adjust the weights \vec{w} and thresholds b to get closer to given 'correct answers'. Directional derivatives and chain rule that we will learn in this course are the key ingredients in deep learning.
Question D: Suppose the correct answer (for the particular input $\vec{x}=(1,0,1)$) is $\vec{z}_{\text {correct }}=$ $(1,0)$. What is the squared distance

$$
\left\|\vec{z}-\vec{z}_{\text {correct }}\right\|^{2}
$$

(where $\|\vec{v}\|:=\sqrt{\vec{v} \cdot \vec{v}}$ for a vector \vec{v})? (Again use a calculator to give the answer up to two decimal places.) Suppose we change \vec{w}_{1} to $(0.1,0.3,0.6)$. How does it change $\left\|\vec{z}-\vec{z}_{\text {correct }}\right\|^{2}$? Does it result in a better answer or not?

