MA225D Mock Test 1

Name: \qquad

TRUE/FALSE. Write ' T ' if the statement is true and ' F ' if the statement is false. (1 mark each)

1) The vector $\langle 1 / 5,2 / 5,2 / 5\rangle$ is a unit vector.
2) Two vectors \vec{v} and \vec{w} are parallel if $\vec{v} \cdot \vec{w}=\overrightarrow{0}$.
3) If two planes $a x+b y+c z=d$ and $A x+B y+C z=D$ are parallel, then $a=A, b=B$, and $c=C$.
4) Every point on the parametric curve $r(t)=\left(t, t^{2},-t\right)$ lies on the surface $x z+y=0$.
5) Proj $\underset{u}{ } \overrightarrow{\mathrm{u}}$ v$=\operatorname{Proj} \underset{v}{ } \overrightarrow{\mathrm{u}}$ for all vectors \vec{u} and \vec{v}.
6) The curvature of the curves $r(t)=\left(t, t^{2}, t^{3}\right)$ and $R(t)=\left(t^{2}, t^{4}, t^{6}\right)$ are the same at $t=1$.
7) The vector $\langle-5,4,1\rangle$ is parallel to the plane $-5 x+4 y+z=2$.
8) There are vectors \vec{u} and \vec{v} such that $\vec{u} \cdot \vec{v}=\|\vec{u} \times \vec{v}\|$.
9)
10) \qquad
11) \qquad
12) \qquad
13) \qquad
14)
15) \qquad
16) \qquad

MULTIPLE CHOICE. (2 marks each)

The position vector of a particle is $\mathbf{r}(\mathbf{t})$. Find the requested vector.
9) The velocity at $t=1$ for $\mathbf{r}(\mathrm{t})=\left(2-4 t^{2}\right) \mathbf{i}+(6 t+5) \mathbf{j}-e^{-6 t} \mathbf{k}$
A) $\mathbf{v}(1)=8 \mathbf{i}+6 \mathbf{j}+6 \mathrm{e}^{-6} \mathbf{k}$
B) $\mathbf{v}(1)=-8 \mathbf{i}+6 \mathbf{j}+6 \mathrm{e}^{-6} \mathbf{k}$
C) $\mathbf{v}(1)=-4 \mathbf{i}+6 \mathbf{j}+6 e^{-6} \mathbf{k}$
D) $\mathbf{v}(1)=-8 \mathbf{i}+6 \mathbf{j}-6 e^{-6} \mathbf{k}$
10) What is the geometric object defined by $z=x^{2}+y^{2}$?
10)
9) \qquad
A) a circle
B) a parabola
C) a paraboloid
D) a circular cone
11) What is the volume of the parallelepiped spanned by the vectors $\langle 1,0,0\rangle,\langle 0,2,0\rangle$ and $\langle 1,1,1\rangle$?
A) 1
B) 2
C)
D) 0
11) \qquad
12) The following equations each describe the motion of a particle. For which path is the particle's
12) speed constant?
(1) $\mathbf{r}(\mathrm{t})=\mathrm{t}^{2} \mathbf{i}+\mathrm{t}^{5} \mathbf{j}$
(2) $\mathbf{r}(\mathrm{t})=\cos (8 \mathrm{t}) \mathbf{i}+\sin (5 \mathrm{t}) \mathbf{j}$
(3) $\mathbf{r}(\mathrm{t})=\mathrm{ti}+\mathrm{tj}$
(4) $\mathbf{r}(\mathrm{t})=\cos \left(9 \mathrm{t}^{2}\right) \mathbf{i}+\sin \left(9 t^{2}\right) \mathbf{j}$
A) Path (3)
B) Path (4) and Path (2)
C) Path (1)
D) Path (2) and Path (3)

The position vector of a particle is $\mathbf{r}(\mathbf{t})$. Find the requested vector.
13) The acceleration at $t=1$ for $\mathbf{r}(t)=\left(3 t-2 t^{4}\right) \mathbf{i}+(2-t) \mathbf{j}+\left(6 t^{2}-7 t\right) \mathbf{k}$
A) $\mathbf{a}(1)=24 \mathbf{i}+12 \mathbf{k}$
B) $\mathbf{a}(1)=-6 \mathbf{i}+12 \mathbf{k}$
C) $\mathbf{a}(1)=-24 \mathbf{i}-\mathbf{j}+12 \mathbf{k}$
D) $\mathbf{a}(1)=-24 \mathbf{i}+12 \mathbf{k}$

The vector $r(t)$ is the position vector of a particle at time t. Find the angle between the velocity and the acceleration vectors at time $t=0$.
14) $\mathbf{r}(\mathrm{t})=\left(4 \mathrm{t}^{2}+7\right) \mathbf{i}+\left(3 \mathrm{t}^{3}-2 \mathrm{t}\right) \mathbf{k}$
14)
A) π
B) $\frac{\pi}{2}$
C) $\frac{\pi}{4}$
D) 0

For the smooth curve $r(t)$, find the parametric equations for the line that is tangent to r at the given parameter value $t=\mathrm{t}_{0}$.
15) $\mathbf{r}(\mathrm{t})=(6 \sin \mathrm{t}) \mathbf{i}-(9 \cos 3 \mathrm{t}) \mathbf{j}+\mathrm{e}^{-10 \mathrm{t}_{\mathbf{k}} ; \mathrm{t}_{\mathrm{O}}=0}$
A) $x=6 t, y=-9, z=1-10 t$
B) $x=6 t, y=9, z=1+t$
C) $x=6, y=-9 t, z=-10+t$
D) $x=6 t, y=-9, z=1-t$

SHORT QUESTIONS.

16) Write down a parametrization for the following.
a) $4 x^{2}+9 y^{2}=1, z=3$.
b) $x^{2}+y^{2}=z^{2}+1$.
c) $x^{2}+2 y^{2}+4 z^{2}=4$.
d) The graph of the function $f(x, y)=e^{y}(\sin x)$.
e) The plane normal to $(1,1,1)$ passing through the point $(0,0,1)$.
17) Compute the first derivatives for the following. (4 marks)
a) $\gamma(\mathrm{t})=\left(\cos \left(\mathrm{e}^{2 \mathrm{t}}\right), \sin \left(\mathrm{e}^{2 \mathrm{t}}\right), \mathrm{e}^{2 \mathrm{t}}\right)$.
b) $\left(t, 2 t, 3 t^{2}\right) \cdot(\cos (t), \sin (t), \log (t))$ at $t=\pi . \quad(\log (t)=\ln (t)$ throughout this course.)
18) Find the arc length parameter of the curve (6 marks)
$\gamma(\mathrm{t})=(4 \cos \mathrm{t}, 4 \sin \mathrm{t}, 5 \mathrm{t})$
by evaluating $\mathrm{s}=\int_{0}^{\mathrm{t}}\left|\gamma^{\prime}(\tau)\right| \mathrm{d} \tau$.
Compute $\frac{\mathrm{ds}}{\mathrm{dt}}$ and $\frac{\mathrm{dt}}{\mathrm{ds}}$. What is the physical meaning of $\frac{\mathrm{ds}}{\mathrm{dt}}$?
