Name: \qquad (2 marks)

TRUE/FALSE. Write ' T ' if the statement is true and ' F ' if the statement is false. (8 marks)

1) Let $f(x, y, z)$ be a function. The line integral of $\operatorname{curl}(\nabla f))$ around any circle is zero.
2) The flux of the curl of a vector field through the disc $x^{2}+y^{2} \leq 1, z=0$ is always zero.
3) If a function $f(x, y)$ has a critical point at $(0,0)$ then $\operatorname{div}(\operatorname{grad}(f))(0,0)$ is zero.
4) The gradient of the divergence of the curl of a vector field is constantly zero.
5) The points in the 3 d space that satisfy $\theta=\pi / 4$ and $\varphi=\pi / 4$ in spherical coordinates form a surface which is part of a cone.
6) For any vector field \mathbf{F} and any curve r parametrized on $[a, b]$ we have $\int_{a}^{b} F(r(t)) \cdot r^{\prime}(t) d t=F(r(b))-F(r(a))$.
7) The solid enclosed by the surfaces $z=2-\sqrt{x^{2}+y^{2}}$ and $z=\sqrt{x^{2}+y^{2}}$ has the volume $\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{2-r} d z d r d \theta$
8) In the plane, the line integral of $\mathbf{F}(x, y)=(-y, x)$ along the (counterclockwise oriented)
9)
10)
11) \qquad
12) \qquad
13) \qquad
14) \qquad
15) \qquad
16) \qquad

SHORT QUESTIONS. (40 marks)

9) Check whether the vector field
$\mathbf{F}=\left(\frac{10 x^{9} y^{10}}{z^{3}}\right) i+\left(\frac{10 x^{10} y^{9}}{z^{3}}\right) j-\left(\frac{3 x^{10} y^{10}}{z^{4}}\right) \mathbf{k}$
is a gradient vector field or not.
(4 marks)
10) Find the potential function for the vector field
$\mathrm{F}=\frac{1}{\mathrm{z}} \mathrm{i}-4 \mathrm{j}-\frac{\mathrm{x}}{\mathrm{z}^{2}} \mathrm{k}$.
Compute the path integral
$\int_{C} F \cdot d \mathbf{C}$
for the curve C parametrized by $(\cos t, \sin t, t)$ for $2 \pi \leq t \leq 3 \pi$.
(6 marks)
11) Find a parametrization of the surface S which is the portion of the cone $\frac{x^{2}}{25}+\frac{y^{2}}{25}=\frac{z^{2}}{16}$ that lies between $z=2$ and $z=3$. Find the area element. Then find the surface area of S.
12) Find the path integral $\int_{C} \mathbf{F} \cdot d \mathbf{C}$, where $\mathbf{F}=-\sqrt{x^{2}+y^{2}} \mathbf{i}+\sqrt{x^{2}+y^{2}} \mathbf{j}$ and C is the (counterclockwise) boundary of the region defined by the polar coordinate inequalities $6 \leq r \leq 8$ and $0 \leq \theta \leq \pi . \quad$ (8 marks)
13) Parametrize the boundary curve of the surface given by
$r(r, \theta)=\left(r \cos \theta, r \sin \theta,\left(4-r^{2}\right)\right)$ for $0 \leq r \leq 2$ and $0 \leq \theta \leq 2 \pi$.
Then find the flux $\int_{S} \operatorname{curl} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}$ where $\mathbf{F}=3 \mathrm{yi}+5 \mathrm{z} \mathbf{j}-2 \mathrm{x} \mathbf{k}$.
(You can freely take your own choice of orientation.)
(8 marks)
14) Find the flux integral $\int_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}$ where the surface S is the boundary of the solid cube cut by the coordinate planes $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0$, and the planes $\mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1 . \mathrm{S}$ takes the outward orientation. $\mathrm{F}=\langle\mathrm{z}, \mathrm{xy}, \mathrm{zy}\rangle . \quad$ (6 marks)
