Homework: Surface area

by Oliver Knill

1 Find the surface area of the surface given by

$$
z=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right), 0 \leq x \leq 1,0 \leq y \leq 1
$$

2 Find the area of the surface given by the helicoid

$$
\vec{r}(u, v)=\langle u \cos (v), u \sin (v), v\rangle .
$$

with $0 \leq u \leq 1,0 \leq v \leq \pi$.
3 A decorative paper lantern is made of 8 surfaces. Each is parametrized by

$$
\vec{r}(t, z)=\langle 10 z \cos (t), 10 z \sin (t), z\rangle
$$

with $0 \leq t \leq 2 \pi$ and $0 \leq z \leq 1$ and then translated or rotated. Find the to-
 tal surface area of the lantern.

4 The figure shows the torus obtained by rotating about the z-axis the circle in the $x z$-plane with center $(b, 0,0)$ and radius $a<b$. Parametric equations for the torus are

$$
\begin{aligned}
& x=b \cos \theta+a \cos \alpha \cos \theta \\
& y=b \sin \theta+a \cos \alpha \sin \theta \\
& z=a \sin \alpha
\end{aligned}
$$

where θ and α are the angles shown in the figure. Find the surface
area of the torus.

5 The volume and surface area of the solid obtained by intersecting the solid cylinder $y^{2}+z^{2} \leq 1$ with the solid cylinder $x^{2}+z^{2} \leq 1$ has been found by Archimedes already. Find the surface area of the
surface S bounding this solid.

Main definitions:

A surface $\vec{r}(u, v)$ parametrized on a parameter domain R has the surface area

$$
\iint_{R}\left|\vec{r}_{u}(u, v) \times \vec{r}_{v}(u, v)\right| d u d v
$$

Examples:

$\vec{r}(u, v)$	$\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|$
$\langle\rho \cos (u) \sin (v), \rho \sin (u) \sin (v), \rho \cos (v)\rangle$	$\rho^{2}\|\sin (v)\|$
$\langle u, v, f(u, v)\rangle$	$\sqrt{1+f_{u}^{2}+f_{v}^{2}}$
$\langle f(v) \cos (u), f(v) \sin (u), v\rangle$	$f(v) \sqrt{1+f^{\prime}(v)^{2}}$

