MATH 563 DIFFERENTIAL GEOMETRY Mock Exam

1. Compute the Frenet frame and curvature of the ellipse

$$\{x^2/9 + y^2/4 = 1\} \subset \mathbb{R}^2.$$

Find all the local extremal points of the curvature function.

- 2. Consider the unit sphere in spherical coordinates (ϕ, θ) .
 - (a) Compute the area form.
 - (b) Compute the Levi-Civita connection 1-form

$$\Gamma^k_j = \Gamma^k_{ij} dx^i$$

(where x^1 means ϕ and x^2 means θ).

- (c) Find the orthonormal frame (X_1, X_2) obtained by the Gram-Schmidt process applied on the coordinate frame $(\partial_{\phi}, \partial_{\theta})$.
- (d) Compute the connection 1-form A in the orthonormal frame (X_1, X_2) , which is a one-form-valued (2×2) -matrix.
- (e) Compute the curvature 2-form $\Omega = dA + A \wedge A$ in the orthonormal frame (X_1, X_2) , which is a two-form-valued (2×2) -matrix. Hence conclude the Gauss curvature.
- (f) Consider the annulus defined by $\pi/3 \leq \phi \leq \pi/2$. What does the Gauss-Bonnet formula say for this annulus? Hence find the difference in the total geodesic curvatures of the two circles $\phi = \pi/3$ and $\phi = \pi/2$.