MATH 563 DIFFERENTIAL GEOMETRY Mock Exam

1. Compute the Frenet frame and curvature of the ellipse

$$
\left\{x^{2} / 9+y^{2} / 4=1\right\} \subset \mathbb{R}^{2}
$$

Find all the local extremal points of the curvature function.
2. Consider the unit sphere in spherical coordinates (ϕ, θ).
(a) Compute the area form.
(b) Compute the Levi-Civita connection 1-form

$$
\Gamma_{j}^{k}=\Gamma_{i j}^{k} d x^{i}
$$

(where x^{1} means ϕ and x^{2} means θ).
(c) Find the orthonormal frame $\left(X_{1}, X_{2}\right)$ obtained by the Gram-Schmidt process applied on the coordinate frame $\left(\partial_{\phi}, \partial_{\theta}\right)$.
(d) Compute the connection 1-form A in the orthonormal frame (X_{1}, X_{2}), which is a one-form-valued (2×2)-matrix.
(e) Compute the curvature 2-form $\Omega=d A+A \wedge A$ in the orthonormal frame $\left(X_{1}, X_{2}\right)$, which is a two-form-valued (2×2)-matrix. Hence conclude the Gauss curvature.
(f) Consider the annulus defined by $\pi / 3 \leq \phi \leq \pi / 2$. What does the Gauss-Bonnet formula say for this annulus? Hence find the difference in the total geodesic curvatures of the two circles $\phi=\pi / 3$ and $\phi=$ $\pi / 2$.

