EXERCISE ON DIFFERENTIAL FORMS

LECTURER: SIU-CHEONG LAU

- (1) Consider the two vectors $v_1 = (-2, 1)$ and $v_2 = (2, 1)$ in \mathbb{R}^2 . Compute $v_1 \wedge v_2$ in terms of the basic vectors $e_1 = (1,0)$ and $e_2 = (0,1)$. What is
- the relation with det $(v_1 \ v_2)$? Is the basis (v_1, v_2) positively oriented? (2) Similarly, consider three vectors $v_i = \sum_{j=1}^3 a_i^j e_j$ where $\{e_1, e_2, e_3\}$ is the standard basis and $a_i^j \in \mathbb{R}$. Compute $v_1 \wedge v_2 \wedge v_3$ in terms of $e_1 \wedge e_2 \wedge e_3$. What is the relation with det $(v_1 \ v_2 \ v_3)$? (3) Consider $\eta = x \, dx$. Compute $\eta(y^2 \frac{\partial}{\partial x} + \frac{\partial}{\partial y})$ at (x, y) = (2, 1). (4) Consider $\omega = x \, dx \wedge dy$. Compute $\omega(y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}, x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y})$ at (x, y) = (2, 1).

- (5) Compute $(xdx + ydy) \wedge (-ydx + xdy)$.
- (6) Now consider f(u, v) = (x(u, v), y(u, v)). Write down dx and dy in term of du, dv. Then compute $dx \wedge dy$. (You should get the Jacobian of f).
- (7) Compute d(xdy ydx). How about

$$d\left(\frac{x}{x^2+y^2}dy - \frac{y}{x^2+y^2}dx\right)?$$

 $\left(\frac{x}{x^2+y^2}dy - \frac{y}{x^2+y^2}dx\right)$ is known as the angle form on the plane.)

- (8) Express $v \otimes v \otimes v$ in terms of the basis $\{e_1, e_2\}$ for $v = 2e_1 3e_2$.
- (9) Check that $V^* \otimes W \to \operatorname{Hom}(V, W)$ defined by $(\nu \otimes w)(v) := \nu(v)w$ is an isomorphism.

Department of Mathematics and Statistics, Boston University E-mail address: lau@math.bu.edu