EXERCISE ON DIFFERENTIAL FORMS

LECTURER: SIU-CHEONG LAU

(1) Consider the two vectors $v_{1}=(-2,1)$ and $v_{2}=(2,1)$ in \mathbb{R}^{2}. Compute $v_{1} \wedge v_{2}$ in terms of the basic vectors $e_{1}=(1,0)$ and $e_{2}=(0,1)$. What is the relation with $\operatorname{det}\left(v_{1} v_{2}\right)$? Is the basis $\left(v_{1}, v_{2}\right)$ positively oriented?
(2) Similarly, consider three vectors $v_{i}=\sum_{j=1}^{3} a_{i}^{j} e_{j}$ where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the standard basis and $a_{i}^{j} \in \mathbb{R}$. Compute $v_{1} \wedge v_{2} \wedge v_{3}$ in terms of $e_{1} \wedge e_{2} \wedge e_{3}$. What is the relation with $\operatorname{det}\left(v_{1} v_{2} v_{3}\right)$?
(3) Consider $\eta=x d x$. Compute $\eta\left(y^{2} \frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)$ at $(x, y)=(2,1)$.
(4) Consider $\omega=x d x \wedge d y$. Compute $\omega\left(y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}, x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$ at $(x, y)=(2,1)$.
(5) Compute $(x d x+y d y) \wedge(-y d x+x d y)$.
(6) Now consider $f(u, v)=(x(u, v), y(u, v))$. Write down $d x$ and $d y$ in term of $d u, d v$. Then compute $d x \wedge d y$. (You should get the Jacobian of f).
(7) Compute $d(x d y-y d x)$. How about

$$
d\left(\frac{x}{x^{2}+y^{2}} d y-\frac{y}{x^{2}+y^{2}} d x\right) ?
$$

$\left(\frac{x}{x^{2}+y^{2}} d y-\frac{y}{x^{2}+y^{2}} d x\right.$ is known as the angle form on the plane.)
(8) Express $v \otimes v \otimes v$ in terms of the basis $\left\{e_{1}, e_{2}\right\}$ for $v=2 e_{1}-3 e_{2}$.
(9) Check that $V^{*} \otimes W \rightarrow \operatorname{Hom}(V, W)$ defined by $(\nu \otimes w)(v):=\nu(v) w$ is an isomorphism.

Department of Mathematics and Statistics, Boston University
E-mail address: lau@math.bu.edu

