DIFFERENTIAL GEOMETRY HOMEWORK 11

LECTURER: SIU-CHEONG LAU

(1) Compute

$$\int_D e^{x^2 + y^2} dx \wedge dy$$

by changing to polar coordinates, where $D=\{(x,y)\in \mathbb{R}^2: x^2+y^2\leq 1\}$ is the unit disc.

(2) Prove that on $\mathbb{R}^2 - \{0\}$,

$$\omega = \frac{-y\,dx + x\,dy}{x^2 + y^2}$$

belongs to $\operatorname{Ker}(d)$ but not $\operatorname{Im}(d)$. (Hint: consider $\oint \omega$).

(3) The area form of the (n-1)-dimensional sphere

$$S = \left\{ \sum_{i=1}^{n} x_i^2 = R^2 \right\} \subset \mathbb{R}^n$$

of radius R is given by

$$\frac{1}{R}\sum_{i=1}^{n}(-1)^{i-1}x_idx_1\wedge\ldots\wedge\widehat{dx_i}\wedge\ldots\wedge dx_n\bigg|_{S}.$$

(This is obtained by contracting the volume form $dx_1 \wedge \ldots \wedge dx_n$ by the outward unit normal $\frac{1}{R} \sum_i x_i \partial_{x_i}$ of the sphere.) Use the Fundamental Theorem of Calculus to explain that

Volume of
$$B = \frac{R}{n} \cdot \text{Area of } S$$

where $B \subset \mathbb{R}^n$ is an *n*-dimensional ball of radius *R*. (For instance, the volume of the 3-dimensional ball is $4\pi R^3/3$ while the area of the 2-dimensional sphere is $4\pi R^2$.)

Department of Mathematics and Statistics, Boston University $E\text{-}mail \ address: lau@math.bu.edu$