DIFFERENTIAL GEOMETRY HOMEWORK 11

LECTURER: SIU-CHEONG LAU

(1) Compute

$$
\int_{D} e^{x^{2}+y^{2}} d x \wedge d y
$$

by changing to polar coordinates, where $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$ is the unit disc.
(2) Prove that on $\mathbb{R}^{2}-\{0\}$,

$$
\omega=\frac{-y d x+x d y}{x^{2}+y^{2}}
$$

belongs to $\operatorname{Ker}(d)$ but not $\operatorname{Im}(d)$. (Hint: consider $\oint \omega$).
(3) The area form of the $(n-1)$-dimensional sphere

$$
S=\left\{\sum_{i=1}^{n} x_{i}^{2}=R^{2}\right\} \subset \mathbb{R}^{n}
$$

of radius R is given by

$$
\left.\frac{1}{R} \sum_{i=1}^{n}(-1)^{i-1} x_{i} d x_{1} \wedge \ldots \wedge{\widehat{d x_{i}}}_{i} \wedge \ldots \wedge d x_{n}\right|_{S}
$$

(This is obtained by contracting the volume form $d x_{1} \wedge \ldots \wedge d x_{n}$ by the outward unit normal $\frac{1}{R} \sum_{i} x_{i} \partial_{x_{i}}$ of the sphere.) Use the Fundamental Theorem of Calculus to explain that

$$
\text { Volume of } B=\frac{R}{n} \cdot \text { Area of } S
$$

where $B \subset \mathbb{R}^{n}$ is an n-dimensional ball of radius R. (For instance, the volume of the 3 -dimensional ball is $4 \pi R^{3} / 3$ while the area of the 2 -dimensional sphere is $4 \pi R^{2}$.)

Department of Mathematics and Statistics, Boston University
E-mail address: lau@math.bu.edu

