DIFFERENTIAL GEOMETRY HOMEWORK 2

LECTURER: SIU-CHEONG LAU

- (1) Compute the Frenet frame and curvature of the spiral $r = a\phi$ where a is a constant and (r, ϕ) is the polar coordinate system.
- (2) Show that a space curve c is a part of a helix implies the Darboux rotation vector $D = \tau e_1 + \kappa e_3$ is constant. $\{e_1, e_2, e_3\}$ is the Frenet frame; κ and τ are the curvature and torsion respectively. BONUS: show that the converse is also true.

Department of Mathematics and Statistics, Boston University $E\text{-}mail \ address: lau@math.bu.edu$