DIFFERENTIAL GEOMETRY HOMEWORK 3

LECTURER: SIU-CHEONG LAU

(1) Given a regular plane curve $\gamma(t)$ not passing through the origin, the polar moving frame is defined as $\left(f_{1}(t), f_{2}(t)\right)$, where

$$
f_{1}=\frac{\gamma(t)}{\|\gamma(t)\|}
$$

and f_{2} is obtained by rotating f_{1} by $\pi / 2$. Such a frame is useful in describing planet motion. Let (r, θ) be the polar coordinates, and so $\gamma(t)=$ $(r(t) \cos (\theta(t)), r(t) \sin (\theta(t)))$.
(a) Derive the frame equation

$$
\left(f_{1} f_{2}\right)^{\prime}=\left(f_{1} f_{2}\right) \cdot\left(\begin{array}{cc}
0 & -\theta^{\prime} \\
\theta^{\prime} & 0
\end{array}\right)
$$

(b) Show that

$$
\gamma^{\prime}(t)=r^{\prime}(t) f_{1}(t)+r(t) \theta^{\prime}(t) f_{2}(t)
$$

(c) Suppose $\gamma^{\prime \prime}(t)=-C f_{1}(t)$ where C is a positive constant. (It is the motion of a planet under gravitation from the origin.) Show that the cross product $\gamma \times \gamma^{\prime}$, and hence $r^{2} \theta^{\prime}$, is constant.
(d) Let $A(t)$ be the area of the sector swapped by the line segment with endpoints 0 and $\gamma(\tau)$ for $\tau \in[0, t]$. Using the above, show that $A(t)=$ $k t$ for some $k>0$.
(2) Suppose c is a regular curve contained in the unit sphere $x^{2}+y^{2}+z^{2}=1$. Derive a formula for the curvature and torsion in terms of the geodesic curvature

$$
j(s)=\left\langle c^{\prime \prime}(s), c(s) \times c^{\prime}(s)\right\rangle
$$

(Hint: express $c^{\prime \prime}, c^{\prime \prime \prime}$ in terms of the moving frame $\left(c^{\prime}, c \times c^{\prime}, c\right)$.)
Department of Mathematics and Statistics, Boston University
E-mail address: lau@math.bu.edu

