Smale => moduli of trajectories is regular (and hence has correct dim.).

**Counter-example**: height on vertical torus.

\_\_\_\_\_

### Gradient flow. Need metric.

In Morse charts, if *assuming standard metric* (otherwise may not look perpendicular):



Pseudo-gradient vector field X: (don't use metric on manifold)

-  $df(X) \leq 0$ , with equality exactly at critical points.

- Equals to negative gradient for the standard metric in Morse chart. Advantage: can be analyzed easily near Morse chart. Exists by partition of unity.  $\sum \phi_i X_i$ .

## **Pseudo-gradient flow. Stable and unstable submanifolds** $W^s$ and $W^u$ . (Both are open discs.) **Examples.**

 $\dim W^u(a) = \operatorname{codim} W^s(a) = \operatorname{Ind}(a).$ 

# Sublevel sets $M^a = \{f \le a\}$ . Examples. Morse function gives a cell decomposition.

 $M^a \cong M^b$  if no critical value in between. (Use the flow to retract.)

Crossing critical value  $\alpha$ : suppose only one critical point p in between. Then  $M^b$  is homotopic to  $M^a$  with the unstable submanifold of p attached.

### **Proof**:

Use Morse chart at *p*.

Trouble:  $M^a$  and  $M^b$  have parts lying outside of the chart. Expect to have retract for this part.

*Trick*: modify the Morse function to  $\tilde{f}$  such that

 $\{\tilde{f} \leq b\} = M^b$ ;  $\tilde{f}$  has the same critical points as f;

 $\{\tilde{f} \leq a\}$  is contained in union of  $M^a$  and the Morse chart of f;

 $\tilde{f}$  has no critical value in between *a* and *b*.

Then  $M^b$  retracts to  $\{\tilde{f} \le a\}$ , which equals to  $M^a$  outside the chart and is explicit inside the chart. Then the final retract can be constructed by hand in the chart.

$$\mathbf{\widehat{f}} \mathbf{F}(x) = \begin{cases} f(x) & \text{if } x \notin \Omega(a) \\ \alpha - \|x_-\|^2 + \|x_+\|^2 \mathbf{\widehat{\mu}} \left( \|x_-\|^2 + 2\|x_+\|^2 \right) & \text{if } x = h(x_-, x_+) \end{cases}$$











Smale condition: unstable and stable intersect transversely.

 $\dim(W^u(a) \cap W^s(b)) = \operatorname{Ind}(a) - \operatorname{Ind}(b).$ 

### HARDEST ISSUE in Floer theory.

Remark: has  $\mathbb{R}$  action on M(a, b). Use this to reduce to Morse chart! Want to perturb Morse *f* and pseudo-gradient *X* to obtain Smale.



First can perturb *f* such that all critical points have distinct values: take f + h, where

*h* is constant in disjoint Morse charts,

f + h has distinct values at different critical points,

 $|dh| < \frac{\epsilon}{2}$  where  $\epsilon$  satisfies  $df(X) < -\epsilon$  outside Morse charts.

Then perturb *X*:

Just do perturbation in complement of neighborhoods of critical points. Induction on critical points  $c_i$ , from abs. max. to abs. min., to get

 $W^{s}(c_{i}) \pitchfork W^{u}(c_{i})$  for all *i*.

j = 1 is trivial.

Suppose already have it before *j*. Then modify *X* only in  $f^{-1}([\alpha_i + \epsilon, \alpha_i + 2\epsilon])$  (in Morse chart). (Then transversality above  $c_i$  is not affected.)





Perturb *X* such that  $Q' = \{(w, q, 1) : q \in Q\}$ .  $P \cap Q' = q^{-1}\{w\}$  transverse for any *P*. Done.