Smale $=>$ moduli of trajectories is regular (and hence has correct dim.).
Counter-example: height on vertical torus.
Gradient flow. Need metric.
In Morse charts, if assuming standard metric (otherwise may not look perpendicular):

NOT Mine-Sinde
$(c \leadsto b)$
perturb

Pseudo-gradient flow. Stable and unstable submanifolds W^{s} and
 W^{u}. (Both are open discs.) Examples.
$\operatorname{dim} W^{u}(a)=\operatorname{codim} W^{s}(a)=\operatorname{Ind}(a)$
Sublevel sets $M^{a}=\{f \leq a\}$. Examples. Morse function gives a cell decomposition.
$M^{a} \cong M^{b}$ if no critical value in between. (Use the flow to retract.)
Crossing critical value α : suppose only one critical point p in between. Then M^{b} is homotopic to M^{a} with the unstable submanifold of p attached.

Proof:

Use Morse chart at p.
Trouble: M^{a} and M^{b} have parts lying outside of the chart.
Expect to have retract for this part.
Trick: modify the Morse function to \tilde{f} such that
$\{\tilde{f} \leq b\}=M^{b} ; \tilde{f}$ has the same critical points as f;

$\{\tilde{f} \leq a\}$ is contained in union of M^{a} and the Morse chart of f;
\tilde{f} has no critical value in between a and b.
Then M^{b} retracts to $\{\tilde{f} \leq a\}$, which equals to M^{a} outside the chart and is explicit inside the chart. Then the final retract can be constructed by hand in the chart.
$\tilde{f}_{P}(x)= \begin{cases}f(x) & \text { if } x \notin \Omega(a) \\ \left.\alpha-\left\|x_{-}\right\|^{2}+\left\|x_{+}\right\|^{2}\right) / \mu\left(\left\|x_{-}\right\|^{2}+2\left\|x_{+}\right\|^{2}\right) & \text { if } x=h\left(x_{-}, x_{+}\right) .\end{cases}$

Smale condition: unstable and stable intersect transversely.

$\operatorname{dim}\left(W^{u}(a) \cap W^{s}(b)\right)=\operatorname{Ind}(a)-\operatorname{Ind}(b)$.

HARDEST ISSUE in Floer theory.

Remark: has \mathbb{R} action on $M(a, b)$. Use this to reduce to Morse chart! Want to perturb Morse f and pseudo-gradient X to obtain Smale.

First can perturb f such that all critical points have distinct values:
take $f+h$, where
h is constant in disjoint Morse charts,
$f+h$ has distinct values at different critical points,
$|d h|<\frac{\epsilon}{2}$ where ϵ satisfies $d f(X)<-\epsilon$ outside Morse charts.
Then perturb X :
Just do perturbation in complement of neighborhoods of critical points. Induction on critical points c_{j}, from abs. max. to abs. min., to get $W^{s}\left(c_{j}\right) \pitchfork W^{u}\left(c_{i}\right)$ for all i.
$j=1$ is trivial.
Suppose already have it before j. Then modify X only in $f^{-1}\left(\left[\alpha_{j}+\epsilon, \alpha_{j}+2 \epsilon\right]\right)$ (in Morse chart).
(Then transversality above c_{j} is not affected.)

Consider the stable and an unstable in the level set $f^{-1}\left\{\alpha_{j}+2 \epsilon\right\}(Q$ and $P)$. If not transversal, perturb X

$$
\begin{aligned}
& P=W^{4}\left(c_{i}\right) \cap f^{-1}\left\{\alpha_{j}+2 \varepsilon\right\} \text { NTT } \phi Q \\
& P \text { Partub } Q \text { to } Q^{\prime}
\end{aligned}
$$

Reformulate transversality of the
such that stable becomes Q^{\prime}.
intersection as regularity of function value:
$f^{-1}\left(\left[\alpha_{j}+\epsilon, \alpha_{j}+2 \epsilon\right]\right) \cong D^{k} \times Q \times I$.
(D^{k} is the normal disc in the level set $f^{-1}\left\{\alpha_{j}+2 \epsilon\right\}$.)
Consider $g: P \rightarrow D^{k} . g^{-1}\{0\}=P \cap Q$.
Want $0 \in D$ to be a regular value. But it may not. Sards: has dense set of regular values.
For each unstable has such a dense set. Take w in the intersection.
Perturb X such that $Q^{\prime}=\{(w, q, 1): q \in Q\}$. $P \cap Q^{\prime}=g^{-1}\{w\}$ transverse for any P. Done.

