The complex.

Take formal span of critical points (over \mathbb{Z} or \mathbb{Z}_{2}) graded by index, and count trajectories (up to reparametrization) between them to define a complex.
$\partial_{X}(a)=\sum_{b \in \text { Crit h }_{k=1}} n_{X}(a, b) b$
ex.
\mathbb{S}^{2}.

Key is $d^{2}=0$ and so we can take homology.
Fixing a, b with $\operatorname{deg} a=\operatorname{deg} b+2$, need $\sum_{c} n(a, c) \cdot n(c, b)=0$. LHS is number of broken trajectories from a to b.
Want to prove this is the boundary of a id manifold (and hence cancel with each other).
So compactify the space of smooth trajectories $L(a, b)$ by broken trajectories. (The \mathbb{R} action acts freely and so easy to quotient)

Broken trajectories:

$\overline{\mathcal{L}}(a, b)=\underset{c_{i} \in \operatorname{Crit}(f)}{\bigcup} \mathcal{L}\left(a, c_{1}\right) \times \cdots \times \mathcal{L}\left(c_{q-1}, b\right)$.

Topology on $\bar{L}(\boldsymbol{a}, \boldsymbol{b})$:

Fix a broken $\lambda=\left(\lambda_{1}, \ldots, \lambda_{q}\right)$. Its neighborhood consists of its deformations and smoothings.
Key: every smooth trajectory has \mathbb{R} symmetry. Can reduce to a level set in a Morse chart to see all its small deformations! Base of open sets: $W\left(\lambda, U^{-}, U^{+}\right)$
where U^{-}consists of a neighborhood of the exit point of λ in a Morse chart of each broken point; similarly U^{+}consists of neighborhoods of entry points;
$W\left(\lambda, U^{-}, U^{+}\right)$consists of broken trajectories whose broken points are subset of that of λ. and whose exit and entry points

neignourinuuus ui enliy puints;
$W\left(\lambda, U^{-}, U^{+}\right)$consists of broken trajectories whose broken points are subset of that of λ, and whose exit and entry points are contained in U^{-}and U^{+}.

Smooth trajectories must limit to broken trajectories:

Key: Find the limit using Morse charts.
Consider a sequence of smooth $l_{n} \in L(a, b)$.
Consider exit and entry points l_{n}^{-}, l_{n}^{+}in Morse charts of a, b.
Have limit a^{-}, b^{+}by taking subsequence. (Unstable and stable intersect a level set at a sphere which is compact.)
Take the trajectory l^{1} thru a^{-}, which flows to certain c_{1}.
Let d^{+}be the entry point to c_{1}. l_{n} enters Morse chart of c_{1} at d_{n}^{+}where $d_{n}^{+} \rightarrow d^{+}$.
If $c_{1}=b$, then $d^{+}=b^{+}$. l_{n} limits to l^{1} by definition of topology.
Otherwise l_{n} (which ends at b) exits the Morse chart of c_{1} at d_{n}^{-}
 which has limit d^{-}.
d^{-}lies in the unstable of c_{1} : otherwise the trajectory l^{2} of d^{-} enters the Morse chart of c_{1} at certain point, and this point must be d^{+}as $d_{n}^{-} \rightarrow d^{-}$. Contradiction: the trajectory through d^{+} (which is l^{1}) ends at c_{1}.
Consider l^{2} thru d^{-}emanated from c_{1}. d^{-}plays the role of a^{-} and c_{1} plays the role of a. Do the argument again, and we find a sequence $l^{i} \in L\left(c_{i-1}, c_{i}\right) . f\left(c_{i}\right) \geq f(b)$, and hence the sequence must be finite, and the final $c_{q}=b$. By definition of the topology l_{n} limits to $\left(l^{1}, \ldots, l^{q}\right)$.

Corollary: If index difference is one, $L(a, b)$ is already compact and hence is a finite set. (Cannot break.)

$\bar{L}(\boldsymbol{a}, \boldsymbol{b})$ is compact:

Already know that a sequence of smooth $l_{n} \in L(a, b)$ has convergent subsequence.
Consider a sequence $l_{n} \in \bar{L}(a, b)$.
Have a subsequence in $L\left(a, c_{1}\right) \times \cdots \times L\left(c_{q-1}, b\right) \subset \bar{L}(a, b)$.
Then just apply the known result to each factor.

Manifold with boundary structure on $\bar{L}(a, b)$:

Just do it for $\operatorname{Ind}(a)=\operatorname{Ind}(b)+2$. It is a 1 d manifold with boundary:
Already have manifold structure on $L(a, b)=W^{u}(a) \pitchfork W^{s}(b)$. Consider $\left(\lambda_{1}, \lambda_{2}\right) \in L(a, c) \times L(c, b) \subset \bar{L}(a, b)$.
Need to take a neighborhood and identify with $[0, \delta)$.
Want to embed $[0, \delta)$ into $\bar{L}(a, b)$ (with $0 \mapsto\left(\lambda_{1}, \lambda_{2}\right)$), and then show that it covers a neighborhood of $\left(\lambda_{1}, \lambda_{2}\right)$.
Again use level set in Morse chart of c to see the trajectories.

Take entry point a_{1} of λ_{1}, and unstable of a in the level set, denoted by $P \cong \mathbb{S}^{i-1} \ni a_{1}$.
$L(a, c) \subset P$ is finite by transversality. Can take a neighborhood $n \subset P$ of a_{1} in the level set such that $\lambda_{1}, f I .(a r)$ is the onlv one
aenoted $\operatorname{by} P \cong ゝ^{\star}+\ni a_{1}$.
$L(a, c) \subset P$ is finite by transversality. Can take a neighborhood $D \subset P$ of a_{1} in the level set such that $\lambda_{1} \in L(a, c)$ is the only one intersecting D.
$L(a, b) \subset P$ is an open curve. However don't know what it exactly look like in D yet. (Want to say it is an open curve in D with boundary point a_{1}.)
The open curve is $\left(D-\left\{a_{1}\right\}\right) \pitchfork W^{s}(b)$. However cannot talk about a_{1}. Go to a lower level to see better.
Flow $D-\left\{a_{1}\right\}$ to a lower level (than c) in the Morse chart. It is an open annulus A with inner boundary being $S_{-}(c)$.
$W^{s}(b) \cap\left(A \cup S_{-}(c)\right)=(L(a, b)$ seen in $A) \cup L(c, b)$ is a finite union of curves with boundary $W^{s}(b) \cap S_{-}(c)=L(c, b)$
 contaning λ_{2}.
Thus we can pick the curve with boundary λ_{2} and identify with $[0, \delta)$.

The image of $[0, \delta)$ covers an open neighborhood of $\left(\lambda_{1}, \lambda_{2}\right)$:
Take a sequence $\bar{L}(a, b) \ni l_{n} \rightarrow\left(\lambda_{1}, \lambda_{2}\right)$. Want to show it gradually falls in image of $[0, \delta)$.
If infinitely many l_{n} are smooth, consider their intersections with the lower level set, which lie in the open curve and tend to its boundary λ_{2}. Hence gradually fall in $[0, \delta)$.
Otherwise can assume they all have broken point c. Just finitely many due to index reason. Since they tend to $\left(\lambda_{1}, \lambda_{2}\right)$, gradually all of them are $\left(\lambda_{1}, \lambda_{2}\right)$ (corresponding to the point $0 \in$ $[0, \delta)$).

Thus $\bar{L}(a, b)$ is either a circle or an interval.

Orientation of moduli

(DON'T NEED M to be oriented.)
Choose orientation on $W^{s}(c)$ for all c. Then have co-orientation on $W^{u}(c)$, and hence on

$$
L(a, b) \cong W^{u}(a) \pitchfork W^{s}(b) \pitchfork f^{-1}\{r\}
$$

(where co-orientation of $f^{-1}\{r\}$ is given by pseudo-grad).
$S \pitchfork \boldsymbol{U}$ is oriented if S is oriented and U is co-oriented: take a basis B of $S \cap U$, extended it to that of S by attaching oriented basis of $N(U) \cong S /(S \cap U)$. B is oriented if the extended basis is oriented in S.

Then have correct signs.

Morse homology as an invariant

Want to show it is independent of choice of f and X.
For $\left(f_{0}, X_{0}\right)$ and $\left(f_{1}, X_{1}\right)$, easy to find a homotopy F between
them. Need to show that it induces a morphism of the two chain complexes, which is compatible with concatenation of homotopies.

Given a homotopy $F: M \times[0,1] \rightarrow \mathbb{R}$ has $F_{s}=f_{0}$ for $s \leq \frac{1}{3}$ and $F_{s}=f_{1}$ for $s \geq \frac{2}{3}$. Can extend F to $s \in \mathbb{R}$ trivially.
Want to make it Morse with only critical points being $\operatorname{Crit}\left(f_{0}\right) \times$
$\{0\}$ and $\operatorname{Crit}\left(f_{1}\right) \times\{1\}$.
Take $\tilde{F}=F(x, s)+g(s)$, where $g^{\prime}(0)=g^{\prime}(1)=0$, $\partial_{s} F+g^{\prime}<0$ for $s \in(0,1)$.
Note that flow direction must be from $s=0$ to $s=1$.
$\operatorname{Ind}_{\tilde{F}}(a, 0)=\operatorname{Ind}_{f_{0}}(a)+1, \quad \operatorname{Ind}_{\tilde{F}}(b, 1)=\operatorname{Ind}_{f_{1}}(b)$.
Use partition of unity to construct X which equals to

$X_{0}-\operatorname{grad} g$ for $s<\frac{1}{3}$ and $X_{1}-\operatorname{grad} g$ for $s>\frac{2}{3}$.
Can perturb a little bit to Smale \tilde{X}. It is still transverse to $M \times$
$\left\{-\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{4}{3}\right\}$. Moreover since $\left.X\right|_{\left[-\frac{1}{3}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{4}{3}\right]}$ is Smale, a small perturbation \tilde{X} has critical points and flow lines that can be
identified with that of X when restricted to $\left[-\frac{1}{3}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{4}{3}\right]$.
Now consider Morse complex of \tilde{X}. Two kinds of trajectories:
$\left(a_{1}, 0\right) \rightarrow\left(a_{2}, 0\right)$ or $\left(b_{1}, 0\right) \rightarrow\left(b_{2}, 0\right)$, and $(a, 0) \rightarrow(b, 1)$.
Can be written as
$\partial=\left(\begin{array}{cc}\partial_{X_{0}} & 0 \\ \Phi & \partial_{X_{1}}\end{array}\right)$ where $\Phi: C^{*}\left(M, f, X_{0}\right) \rightarrow C^{*}\left(M, f, X_{1}\right)$.
(Note that Φ has degree zero.)
By $\partial^{2}=0$, have
$\Phi \circ \partial_{X_{0}}+\partial_{X_{1}} \circ \Phi=0$.
Hence Φ descends to morphism on homology.
(Indeed Φ on chain level depends on choice of perturbations in the construction)

For homotopies $F:\left(f_{0}, X_{0}\right) \sim\left(f_{1}, X_{1}\right), G:\left(f_{1}, X_{1}\right) \sim$
$\left(f_{2}, X_{2}\right), H:\left(f_{0}, X_{0}\right) \sim\left(f_{2}, X_{2}\right)$ (that are identities on the two ends $\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$), take homotopy between $F \circ G$ and H, which induces identification between $\Phi_{F \circ G}$ and Φ_{H} on homologies.

Construct a map $K: M \times\left[-\frac{1}{3}, \frac{4}{3}\right] \times\left[-\frac{1}{3}, \frac{4}{3}\right]$ as shown. Again can modify
$\widetilde{K}=K(x, s, t)+g(s)+g(t)$
where $\partial_{s} K+g^{\prime}(s)<0$ and $\partial_{t} K+g^{\prime}(t)<0$ for $s, t \in[0,1]$
(and g is like above with $g^{\prime}(0)=g^{\prime}(1)=0$).
\widetilde{K} has critical points $(a, 0,0),(b, 1,0),(c, 0,1),(c, 1,1)$ where
$\operatorname{Ind}(a, 0,0)=\operatorname{Ind}(a)+2, \quad \operatorname{Ind}(b, 1,0)=\operatorname{Ind}(b)+1$,
$\operatorname{Ind}(c, 0,1)=\operatorname{Ind}(c)+1, \quad \operatorname{Ind}(c, 1,1)=\operatorname{Ind}(c)$.
Use partition of unity to construct X (pseudo-gradient of \widetilde{K}) agreeing with
$X_{H+g(t)}-\operatorname{grad} g(s)$ on $s \in\left[-\frac{1}{3}, \frac{1}{3}\right]$,
$X_{G+g(t)}-\operatorname{grad} g(s)$ on $s \in\left[\frac{2}{3}, \frac{4}{3}\right]$.
$X_{F+g(s)}-\operatorname{grad} g(t)$ on $t \in\left[-\frac{1}{3}, \frac{1}{3}\right]$,
$X_{f_{2}}-\operatorname{grad} g(s)-\operatorname{grad} g(t)$ on $t \in\left[\frac{2}{3}, \frac{4}{3}\right]$.
Then perturb to Smale. Already Smale in shaded region.
First perturb to $\tilde{X}_{G+g(t)}$ and $\tilde{X}_{H+g(t)}$ (near f_{2}, and use partition of unity to glue with the original). Note the variables s and t are
 still separated.
Then perturb to $\tilde{X}_{F+g(s)}\left(\right.$ near $\left.f_{1}\right)$.
Then already Smale in the four strips. Also no flow from $(0,1)$ to $(1,0)$. Finally perturb to Smale for whole domain.
Trajectories in the four strips have one-one correspondence with the original ones.
Morse complex of \tilde{X} :
$\partial=\left(\begin{array}{cccc}\partial_{X_{0}} & 0 & 0 & 0 \\ \Phi_{\mathrm{F}} & \partial_{X_{1}} & 0 & 0 \\ \Phi_{H} & 0 & \partial_{X_{2}} & 0 \\ S & \Phi_{G} & I d & \partial_{X_{2}}\end{array}\right)$
$\Phi^{G} \circ \Phi^{F}-\Phi^{H}=S \circ \partial_{X_{0}}+\partial_{X_{2}} \circ S$.
S gives a homotopy.
Then take $\left(f_{2}, X_{2}\right)=\left(f_{0}, X_{0}\right), H$ to be identity. Easy to see $\Phi^{H}=$ Id. Hence $\Phi^{G}=\left(\Phi^{F}\right)^{-1}$ on homology.

Morse homology defined similar for manifold with boundary.
Need to choose which components belong to ∂_{+}or ∂_{-}. The pseudo-gradient is required to be outward on ∂_{+}and inward on ∂_{-}(this pose a condition for f).

Left: $H_{*}=\mathbb{Z}[-n]$. Right: \mathbb{Z}.
Call it $H_{*}\left(M, \partial_{+} M\right)$. (RHS: $\partial_{+}=\emptyset$. So it is $H_{*}(M)$.)

