The complex.
Take formal span of critical points (over \mathbb{Z} or \mathbb{Z}_2) graded by index, and count trajectories (up to reparametrization) between them to define a complex.

$$\partial_X(a) = \sum_{b \in \text{Crit}_{a-1}} n_X(a, b) b$$

ex. S^2.

$$\mathcal{L}(a, b)$$

$$\mathcal{H} = \{ \mathcal{L}[2] - \mathcal{L}[2], [0] \}.$$

Fixing a, b with $\deg a = \deg b + 2$, need $\sum_c n(a, c) \cdot n(c, b) = 0$.
LHS is number of broken trajectories from a to b.
Want to prove this is the boundary of a 1d manifold (and hence cancel with each other).
So compactify the space of smooth trajectories $L(a, b)$ by broken trajectories. (The \mathbb{R} action acts freely and so easy to quotient)

Broken trajectories:

$$\mathcal{L}(a, b) = \bigcup_{c \in \text{Crit}(f)} \mathcal{L}(a, c_1) \times \cdots \times \mathcal{L}(c_{q-1}, b).$$

Topology on $L(a, b)$:
Fix a broken $\lambda = (\lambda_1, ..., \lambda_q)$. Its neighborhood consists of its deformations and smoothings.
Key: every smooth trajectory has \mathbb{R} symmetry. Can reduce to a level set in a Morse chart to see all its small deformations!
Base of open sets: $W(\lambda, U^-, U^+)$
where U^- consists of a neighborhood of the exit point of λ in a Morse chart of each broken point; similarly U^+ consists of neighborhoods of entry points;
$W(\lambda, U^-, U^+)$ consists of broken trajectories whose broken points are subset of that of λ, and whose exit and entry points
neighborhoods of entry points; \(W(\lambda, U^-, U^+) \) consists of broken trajectories whose broken points are subset of that of \(\lambda \), and whose exit and entry points are contained in \(U^- \) and \(U^+ \).

Smooth trajectories must limit to broken trajectories:

Key: Find the limit using Morse charts.

Consider a sequence of smooth \(l_n \in L(a, b) \).
Consider exit and entry points \(l_n^- , l_n^+ \) in Morse charts of \(a, b \).
Have limit \(a^-, b^+ \) by taking subsequence. (Unstable and stable intersect a level set at a sphere which is compact.)
Take the trajectory \(l^1 \) thru \(a^- \), which flows to certain \(c_1 \).
Let \(d^+ \) be the entry point to \(c_1 \). \(l_n \) enters Morse chart of \(c_1 \) at \(d_n^+ \) where \(d_n^+ \rightarrow d^+ \).
If \(c_1 = b \), then \(d^+ = b^+ \). \(l_n \) limits to \(l^1 \) by definition of topology.
Otherwise \(l_n \) (which ends at \(b \)) exits the Morse chart of \(c_1 \) at \(d_n^- \) which has limit \(d^- \).
\(d^- \) lies in the unstable of \(c_1 \): otherwise the trajectory \(l^2 \) of \(d^- \) enters the Morse chart of \(c_1 \) at certain point, and this point must be \(d^+ \) as \(d_n^- \rightarrow d^- \). Contradiction: the trajectory through \(d^+ \) (which is \(l^1 \)) ends at \(c_1 \).
Consider \(l^2 \) thru \(d^- \) emanated from \(c_1 \). \(d^- \) plays the role of \(a^- \) and \(c_1 \) plays the role of \(a \). Do the argument again, and we find a sequence \(l^i \in L(c_{i-1}, c_i) \). \(f(c_i) \geq f(b) \), and hence the sequence must be finite, and the final \(c_q = b \). By definition of the topology \(l_n \) limits to \((l^1, ..., l^q) \).

Corollary: If index difference is one, \(L(a, b) \) is already compact and hence is a finite set. (Cannot break.)

\(\bar{L}(a, b) \) is compact:
Already know that a sequence of smooth \(l_n \in L(a, b) \) has convergent subsequence.
Consider a sequence \(l_n \in \bar{L}(a, b) \).
Have a subsequence in \(L(a, c_1) \times ... \times L(c_{q-1}, b) \subset \bar{L}(a, b) \).
Then just apply the known result to each factor.

Manifold with boundary structure on \(\bar{L}(a, b) \):
Just do it for \(\text{Ind}(a) = \text{Ind}(b) + 2 \). It is a 1d manifold with boundary:
Already have manifold structure on \(L(a, b) = W^u(a) \cap W^s(b) \).
Consider \((\lambda_1, \lambda_2) \in L(a, c) \times L(c, b) \subset \bar{L}(a, b) \).

Need to take a neighborhood and identify with [0, \(\delta \)].
Want to embed [0, \(\delta \)] into \(\bar{L}(a, b) \) (with 0 \(\mapsto (\lambda_1, \lambda_2) \)), and then show that it covers a neighborhood of \((\lambda_1, \lambda_2) \).
Again use level set in Morse chart of \(c \) to see the trajectories.
Take entry point \(a_1 \) of \(\lambda_1 \), and unstable of \(a \) in the level set, denoted by \(P \cong S^{d-1} \subset a_1 \).
\(L(a, c) \subset P \) is finite by transversality. Can take a neighborhood \(D \subset P \) of \(a_1 \), in the level set such that \(\lambda, \in L(a, c) \) is the only one
denoted by $P \cong S^r \ni \exists a_1$.
$L(a, c) \subset P$ is finite by transversality. Can take a neighborhood $D \subset P$ of a_1 in the level set such that $\lambda_1 \in L(a, c)$ is the only one intersecting D.
$L(a, b) \subset P$ is an open curve. However don’t know what it exactly look like in D yet. (Want to say it is an open curve in D with boundary point a_1.)
The open curve is $(D - \{a_1\}) \pitchfork W^s(b)$. However cannot talk about a_1. Go to a lower level to see better.
Flow $D - \{a_1\}$ to a lower level (than c) in the Morse chart. It is an open annulus A with inner boundary being $S_-(c)$.
$W^s(b) \cap (A \cup S_-(c)) = (L(a, b) \text{ seen in } A) \cup L(c, b)$ is a finite union of curves with boundary $W^s(b) \cap S_-(c) = L(c, b)$ containing λ_2.
Thus we can pick the curve with boundary λ_2 and identify with $[0, \delta]$.

The image of $[0, \delta)$ covers an open neighborhood of (λ_1, λ_2):
Take a sequence $L(a, b) \ni l_n \to (\lambda_1, \lambda_2)$. Want to show it gradually falls in image of $[0, \delta)$.
If infinitely many l_n are smooth, consider their intersections with the lower level set, which lie in the open curve and tend to its boundary λ_2. Hence gradually fall in $[0, \delta)$.
Otherwise can assume they all have broken point c. Just finitely many due to index reason. Since they tend to (λ_1, λ_2), gradually all of them are (λ_1, λ_2) (corresponding to the point $0 \in [0, \delta)$).

Thus $L(a, b)$ is either a circle or an interval.

Orientation of moduli
(DON’T NEED M to be oriented.)
Choose orientation on $W^s(c)$ for all c. Then have co-orientation on $W^u(c)$, and hence on $L(a, b) \cong W^u(a) \pitchfork W^s(b) \pitchfork f^{-1}\{r\}$
(where co-orientation of $f^{-1}\{r\}$ is given by pseudo-grad).
$S \pitchfork U$ is oriented if S is oriented and U is co-oriented: take a basis B of $S \cap U$, extended it to that of S by attaching oriented basis of $N(U) \cong S/(S \cap U)$. B is oriented if the extended basis is oriented in S.
Then have correct signs.
Morse homology as an invariant
Want to show it is independent of choice of f and X.
For (f_0, X_0) and (f_1, X_1), easy to find a homotopy F between them. Need to show that it induces a morphism of the two chain complexes, which is compatible with concatenation of homotopies.

Given a homotopy $F: M \times [0,1] \to \mathbb{R}$ has $F_s = f_0$ for $s \leq \frac{1}{3}$ and $F_s = f_1$ for $s \geq \frac{2}{3}$. Can extend F to $s \in \mathbb{R}$ trivially.
Want to make it Morse with only critical points being $\text{Crit}(f_0) \times \{0\}$ and $\text{Crit}(f_1) \times \{1\}$.
Take $\tilde{F} = F(x, s) + g(s)$, where $g'(0) = g'(1) = 0$, $\partial_s F + g' < 0$ for $s \in (0,1)$.
Note that flow direction must be from $s = 0$ to $s = 1$.
$\text{Ind}_{\tilde{F}}(a, 0) = \text{Ind}_{f_0}(a) + 1$, $\text{Ind}_{\tilde{F}}(b, 1) = \text{Ind}_{f_1}(b)$.
Use partition of unity to construct X which equals to $X_0 - \text{grad } g$ for $s < \frac{1}{3}$ and $X_1 - \text{grad } g$ for $s > \frac{2}{3}$.
Can perturb a little bit to Smale \tilde{X}. It is still transverse to $M \times \left\{ -\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{4}{3} \right\}$. Moreover since $X|_{\left[-\frac{1}{3}, \frac{1}{3} \right] \cup \left[\frac{2}{3}, \frac{4}{3} \right]}$ is Smale, a small perturbation \tilde{X} has critical points and flow lines that can be identified with that of X when restricted to $\left[-\frac{1}{3}, \frac{1}{3} \right] \cup \left[\frac{2}{3}, \frac{4}{3} \right]$.

Now consider Morse complex of \tilde{X}. Two kinds of trajectories: $(a_1, 0) \to (a_2, 0)$ or $(b_1, 0) \to (b_2, 0)$, and $(a, 0) \to (b, 1)$.
Can be written as $\partial = \begin{pmatrix} \partial_{x_0} & 0 \\ \Phi & \partial_{x_1} \end{pmatrix}$ where $\Phi: C^*(M, f, X_0) \to C^*(M, f, X_1)$.
(Note that Φ has degree zero.)
By $\partial^2 = 0$, have $\Phi \circ \partial_{x_0} + \partial_{x_1} \circ \Phi = 0$.
Hence Φ descends to morphism on homology.
(Indeed Φ on chain level depends on choice of perturbations in the construction)

For homotopies $F: (f_0, X_0) \sim (f_1, X_1)$, $G: (f_1, X_1) \sim (f_2, X_2)$, $H: (f_0, X_0) \sim (f_2, X_2)$ (that are identities on the two ends $\left[0, \frac{1}{3} \right] \cup \left[\frac{2}{3}, 1 \right]$), take homotopy between $F \circ G$ and H, which induces identification between $\Phi_{F \circ G}$ and Φ_H on homologies.
Construct a map $K: M \times \left[-\frac{1}{3}, \frac{4}{3}\right] \times \left[-\frac{1}{3}, \frac{4}{3}\right]$ as shown. Again can modify $\tilde{K} = K(x,s,t) + g(s) + g(t)$ where $\partial_x K + g'(s) < 0$ and $\partial_t K + g'(t) < 0$ for $s, t \in [0,1]$ (and g is like above with $g'(0) = g'(1) = 0$).

\tilde{K} has critical points $(a, 0,0), (b, 1,0), (c, 0,1), (c, 1,1)$ where $\text{Ind}(a,0,0) = \text{Ind}(a) + 2$, $\text{Ind}(b,1,0) = \text{Ind}(b) + 1$, $\text{Ind}(c,0,1) = \text{Ind}(c) + 1$, $\text{Ind}(c,1,1) = \text{Ind}(c)$.

Use partition of unity to construct X (pseudo-gradient of \tilde{K}) agreeing with

$X_{H+g(t)} - \text{grad } g(s)$ on $s \in \left[-\frac{1}{3}, \frac{1}{3}\right]$,

$X_{G+g(t)} - \text{grad } g(s)$ on $s \in \left[\frac{2}{3}, \frac{4}{3}\right]$,

$X_{F+g(s)} - \text{grad } g(t)$ on $t \in \left[-\frac{1}{3}, \frac{1}{3}\right]$,

$X_{f_2} - \text{grad } g(s) - \text{grad } g(t)$ on $t \in \left[\frac{2}{3}, \frac{4}{3}\right]$.

Then perturb to Smale. Already Smale in shaded region. First perturb to $\tilde{X}_{G+g(t)}$ and $\tilde{X}_{H+g(t)}$ (near f_2, and use partition of unity to glue with the original). Note the variables s and t are still separated.

Then perturb to $\tilde{X}_{F+g(s)}$ (near f_1). Then already Smale in the four strips. Also no flow from $(0,1)$ to $(1,0)$. Finally perturb to Smale for whole domain.

Trajectories in the four strips have one-one correspondence with the original ones.

Morse complex of \tilde{X}:

$$\partial = \begin{pmatrix}
\partial_{X_0} & 0 & 0 \\
\Phi_F & \partial_{X_1} & 0 \\
\Phi_H & 0 & \partial_{X_2} \\
S & \Phi_G & \text{Id}
\end{pmatrix}$$

$\Phi^G \circ \Phi^F - \Phi^H = S \circ \partial_{X_0} + \partial_{X_2} \circ S$.

S gives a homotopy.

Then take $(f_2, X_2) = (f_0, X_0)$, H to be identity. Easy to see $\Phi^H = \text{Id}$. Hence $\Phi^G = (\Phi^F)^{-1}$ on homology.
Morse homology defined similar for manifold with boundary. Need to choose which components belong to ∂_+ or $\partial_-. The pseudo-gradient is required to be outward on ∂_+ and inward on $\partial_- \text{ (this pose a condition for } f)$.

Left: $H_* = \mathbb{Z}[-n]$. Right: \mathbb{Z}. Call it $H_*(M, \partial_+ M)$. (RHS: $\partial_+ = \emptyset$. So it is $H_*(M)$.)