Saturday, December 29, 2018 2:15 PM

Kunneth formula $HM_*(M \times N) \cong HM_*(M) \otimes HM_*(N)$.

Take (f + g, X + Y) on $M \times N$. Critical points are $a \otimes a'$ for $a \in Crit(f), a' \in Crit(g)$. $Ind(a \otimes a') = Ind(a) + Ind(a')$. $L((a, a'), (b, b')) = L(a, b) \times L(a', b')$. Hence $\overline{L}((a, a'), (b, b')) = \overline{L}(a, b) \times \overline{L}(a', b')$. $(C_*(f) \otimes C_*(g), \partial_X \otimes Id + Id \otimes \partial_Y) \cong (C_*(f + g), \partial_{X+Y})$: ∂_{X+Y} increases $Ind(a \otimes a')$ by 1. Output $(b \otimes b')$ has Ind(b) = Ind(a) + 1, Ind(b') = Ind(a') (or the other way). $L(a', b') = \emptyset$ by Smale, unless a' = b'. (Note in this case \mathbb{R} acts trivially, and so $L(a', a') = W^u(a') \cap W^s(a')/\mathbb{R}$ is 0-dim.)

 $\bar{L}((a, a'), (b, a')) = \bar{L}(a, b) \times \{a'\}$, and so n((a, a'), (b, a')) = n(a, b).

Poincare duality $HM^{k}(M, \partial_{+}M) \cong HM_{n-k}(M, \partial_{-}M)$.

Morse cohomology defined by $(C_k(f)^*, \partial_X^*)$. $C_k(f)^*$ can be identified as $C_k(f)$ since already have fixed basis. $\partial_X^* a^* = \sum n_b b^*$ where $n_b = (\partial_X^* a^*, b) = (a^*, \partial_X b) = n(b, a)$. $C_k(f)^* = C_{n-k}(-f)$. **Reverse the flow!** $(C_k(f)^*, \partial_X^*) = (C_{n-k}(-f), \partial_{-X})$. Thus $HM^k(M, \partial_+M) \cong HM_{n-k}(M, \partial_-M)$. **NEED** *M* **oriented to be over** \mathbb{Z} : then $W^u(c)$ has induced orientation.

Number of critical points

#Crit = ker \square + im \cong ker \square - im (mod 2) = dim HM and hence is invariant.

Morse inequality

 χ equals to alternating sum of numbers of odd and even critical points. Moreover #Crit_k $\geq \beta_k$.

Prop. HM_0 has rank one for compact connected manifold. **Proof:**

 $C_0(f) = \text{Span} \{a_1, ..., a_r\}$ where a_1 is the absolute minimum. Want $Im \partial_1 = \text{Span} \{a_1 + a_2, ..., a_1 + a_r\}$. $\subset: \partial_1 c = a_i + a_j = (a_1 + a_i) + (a_1 + a_j) \pmod{2}$. ⊃: consider A_j , the set of points ending at a_j through a broken trajectory with (possible) broken point to be index 1. A_j are closed.

If $A_i \cap A_j$ non-empty, must have c with $\partial_1 c = a_i + a_j$.

Note: $\bigcup_j A_j$ is the complement *N* of $W^s(c)$ for $Ind(c) \ge 2$.

N is still connected.

Hence $A_1 \cap (\bigcup_{j \neq 1} A_j)$ must be non-empty, and hence must have some $A_i \cap A_1 \neq \emptyset$.

Replace A_1 by $A_1 \cup A_j$ and repeat the argument inductively. Thus all a_i are homologous to a_1 .

Prop. If there is a Morse function with no critical points of index 1, then *M* is simply connected.

Proof:

Take min point to be the base point. Consider a loop. $W^{s}(p)$ for $ind(p) \ge 2$ has $codim \ge 2$, and so the loop can be made not intersecting with it.

Note that *M* is disjoint union of all the stables.

Thus the loop has to be entirely contained in stable disc of the min. point. Then obviously contractible.

Functoriality Theorem. Morse homology is a functor from

(M, f, X) to graded Abel. groups.

(Morphism $(M, f, X) \rightarrow (N, g, Y)$ is simply a map $u: M \rightarrow N$.) Moreover homotopic morphisms are sent to the same morphism of groups.

Proof:

If *u* is diffeomorphism:

just interpolate $(N, (u^{-1})^* f, u_* X)$ and (N, g, Y) which induces an isomorphism *I* on homology, independent of choice of interpolation (which are all homotopic to each other).

u induces an isomorphism $u_{\#}: C_*(f, X) \to C_*((u^{-1})^*f, u_*X)$. $u_* := I \circ u_{\#}$. $(\boldsymbol{u} \circ \boldsymbol{v})_* = \boldsymbol{u}_* \circ \boldsymbol{v}_*$: $(\boldsymbol{u} \circ \boldsymbol{v})_* = I_3 \circ (\boldsymbol{u} \circ \boldsymbol{v})_{\#} = I_3 \circ u_{\#} \circ v_{\#}$. $u_* \circ v_* = (I_2 \circ u_{\#}) \circ (I_1 \circ v_{\#}) = I_2 \circ (u_{\#} \circ I_1) \circ v_{\#}$. *u* pushes interpolation I_1 is pushed to interpolation I'_1 . Thus $u_{\#} \circ I_1 = I'_1 \circ u_{\#}$. Then $u_* \circ v_* = I_2 \circ I'_1 \circ u_{\#} \circ u_{\#} = I_3 \circ u_{\#} \circ v_{\#}$ since the interpolations $I_2 \circ I'_1$ and I_3 are homotopic.

If $u: M \rightarrow N$ is an embedding:

extend (f, X) on M to (\tilde{f}, \tilde{X}) on N. Need $Crit(f) \subset Crit(\tilde{f})$ (with same indices) and $\tilde{\partial}a = \partial a$.

Then have a morphism $u_{\#}: C_*(f, X) \to C_*(\tilde{f}, \tilde{X})$. Then interpolate from (\tilde{f}, \tilde{X}) to (g, Y) as before. $(u \circ v)_* = u_* \circ v_*$ like before.

How to extend:

near critical point of *M*, take chart and $\tilde{f} = f(x) + \frac{1}{2}|y|^2$ (don't change index) $\tilde{X} = (X(x), -y).$

Then extend by partition of unity in the complement. (Non-critical point of (M, f) remains to be non-critical point of (N, \tilde{f}) .) Also it is made that \tilde{X} is pointing inward in tubular neighborhood.

There is $\epsilon > 0$ such that $df(X) < -\epsilon$ in the complement of Morse chart in *M*.

Also $d\tilde{f}(\tilde{X}) \leq 0$ near critical point.

So $d\tilde{f}(\tilde{X}) \leq 0$ for some neighborhood U of $M \subset N$.

In U, \tilde{f} only has (Morse) critical points being that f, and \tilde{X} is a pseudogradient.

Then perturb \tilde{f} outside *U* such that it becomes Morse, and extend \tilde{X} from U to N using partition of unity such that it is pseudogradient.

Need to perturb \tilde{X} to Smale. Restriction to U already Smale (L(a, b) exactly the same). Small perturbation still have the same set of trajectories. Hence inclusion gives a chain map.

Homotopic morphisms u_t are sent to the same morphism of groups in case u_t are embedding:

 u_t gives $[0,1] \times M \to N$, and hence $\tilde{u}: [0,1] \times M \to [0,1] \times N$ which is an

 i_0^M induces isomorphism on *HM*: (extend \tilde{u} a bit to $[-\epsilon, 1+\epsilon]$ to say this)

Take $\tilde{f} = f + \frac{y^2}{2}$ on $[-\epsilon, 1 + \epsilon] \times M$. Then obvious \tilde{f} and f have the same Morse complex.

Then $u_{0_*} = (i_{0_*}^N)^{-1} \circ \tilde{u}_* \circ i_{0_*}^M$. $i_{0_*} = i_{1_*}$. Hence $u_{0_*} = u_{1_*}$.

Take a diffeomorphism ϕ on $[-\epsilon, 1 + \epsilon]$ sending 0 to 1. The critical

Take embedding $\phi: M \to D^n$. Then $(\phi, u): M \to D \times N$ is embedding, so have $(\phi, u)_*$ to $HM(D \times N)$. Go back to HM(N) by $(i_0)_*^{-1}$. $u_* \coloneqq (i_0)_*^{-1} \circ (\phi, u)_*.$

Independent of choice of ϕ **:**

Say have a different embedding ψ . Have homotopy $i_0 \circ u = (0, u) \sim$ (ϕ, u) . But u is not an embedding and does not induce map on homology directly. Combine the two choices (ψ, ϕ) and get third choice!

Homotopy $l_0 \circ (\phi, u) = (0, \phi, u) \sim (\psi, \phi, u)$ by $(t\psi, \phi, u)$. Thus diagram commutes on homology. **Composition:** Enlarge the target for $v \circ u$ by combining that for the individual *u* and *v*.

$$v_{\star} \circ u_{\star} = (j_0)_{\star}^{-1} \circ (\psi, v)_{\star} \circ (i_0)_{\star}^{-1} \circ (\varphi, u)_{\star}$$
$$= (j_0)_{\star}^{-1} \circ (k_0)_{\star}^{-1} \circ (\psi \circ (\mathrm{Id}, v))_{\star} \circ (\varphi, u)_{\star}$$
$$= (v \circ u)_{\star}.$$

Homotopic maps induces same morphism on homology: Can take ϕ embedding, so (ϕ, u_t) are embedding for all $t \in [0,1]$. Already know $(\phi, u_t)_*$ are all the same. So does $u_* = (i_0)_*^{-1} \circ (\phi, u)_*$. END OF PROOF OF FUNCTORIALITY

Long exact sequence $HM_k(M) \rightarrow HM_k(N) \rightarrow HM_k(N, M) \rightarrow \cdots$

For embedding $M \to N$, can extend (f, X) to (\tilde{f}, \tilde{X}) on N like before such that \tilde{X} is pointing inward to M on ∂U , boundary of tubular neighborhood. So $\partial U = \partial_+ \overline{N - U}$. Also \tilde{X} is perturbed to Smale.

$$HM(N,M) := HM(\overline{N-U}, \partial U) = HM\left(\left(\tilde{f}, \tilde{X}\right)\Big|_{\overline{N-U}}\right).$$

Have chain maps $CM_k(f, X) \to CM_k(\tilde{f}, \tilde{X}) \to CM_k((\tilde{f}, \tilde{X})|_{\overline{N-U}})$. The last arrow is chain map $(\partial_{\tilde{X}} p)|_{\overline{N-U}} = \partial_{\tilde{X}|_{\overline{N-U}}}(p|_{\overline{N-U}})$: if $p \in M$, then both sides are zero. If $p \in \overline{N-U}$, then both sides are counting those trajectories not leaving $\overline{N-U}$.

Then have the long exact sequence. Connecting homo. $\partial: CM_k$

 $(\tilde{f}, \tilde{X})|_{\overline{N-U}} \to CM_{k-1}(f, X)$ is simply counting trajectories from N - M to M.

When *N* is manifold with boundary *M*, similar by extending *N* a bit to \tilde{N} so that *M* is a hypersurface in \tilde{N} . Then define $HM_k(N, \partial N)$ as $HM_k(\tilde{N}, M)$.

ex. $N = D^n$. $HM_k(D^n, \partial D) = \mathbb{Z}$ for k = n and zero otherwise. $HM_k(D^n) = \mathbb{Z}$ for k = 0 and zero otherwise. So $HM_0(\mathbb{S}^{n-1}) \cong HM_0(D^n)$; $HM_n(D^n, \mathbb{S}^{n-1}) \cong HM_{n-1}(\mathbb{S}^{n-1})$.