- The short exact sequence of de Ream complexes $0 \rightarrow \Omega^{\circ}(M) \rightarrow \Omega^{\left(l_{1}^{*}, l_{2}^{*}\right)}\left(u_{1}\right) \bullet \Omega\left(u_{2}\right) \longrightarrow \Omega_{1}^{*}-r_{2}^{*}\left(u_{12}\right) \longrightarrow 0$.
- The Mayer-Vietoris sequence
- Partition of unity to prove the short exact sequence (last map is onto)
- Connecting homomorphism: from short exact sequence to long exact sequence
- Example: sphere. Write down an explicit generator. hold S^{n-1}.
- Alternating sum of all dimensions in long exact sequence $=0$. Also can cut into pieces at 0 .
- Manifolds of different dimensions cannot be homeomorphic. (Consider contractible open set - \{p\})
- Prob. 17.5, 6, 7

$$
\begin{aligned}
& \mathbb{R} \quad \mathbb{R} \\
0 \rightarrow & H^{0}(S) \rightarrow H^{0}\left(u_{1}\right) \oplus H^{0}\left(u_{2}\right) \rightarrow H^{0}\left(u_{12}\right) \\
\rightarrow & H^{1}(S) \rightarrow H^{\prime}\left(u_{1}\right) \oplus H^{\prime}\left(u_{1}\right) \rightarrow H^{\prime}\left(u_{12}\right) \\
\Rightarrow & \vdots \\
& \vdots \\
& \vdots \\
& H^{0}(S) \rightarrow H^{n-1}\left(u_{12}\right) \oplus H^{n-1}\left(u_{2}\right) \rightarrow H^{n-1}\left(u_{12}\right) \\
& 0 H^{n}(\mathbb{S}) \rightarrow H^{n}\left(U_{1}\right) \oplus H^{n}\left(u_{2}\right) \\
& \Rightarrow \mathbb{R}
\end{aligned}
$$

