• **Frobenius theorem**: involutive \iff integrable. \leq is trivial.
• Already known: V_i, \ldots, V_k form a basis of \mathbb{R}^k s.t. $V_i = \partial_i$. ($p^iv = p^jv$ as $[V_i, V_j] = 0$)
• Key: D closed under $[\]$ => can choose local frame $\{V_i\}$ such that $[V_i, V_j] = 0$

Take local coord. x_i, loc. frame $D = \langle x_1, x_n \rangle$ s.t. $D \ni \partial_i, \ldots, \partial_n$.

$$\pi : U \to \mathbb{R}^k$$

Define V_i by $V_i \mapsto \partial_i$.

$$d\pi ([V_i, V_j]) = [\partial_i, \partial_j] = 0 \Rightarrow [V_i, V_j] = 0.$$

• Integral manifold S is weakly embedded:
 any smooth $N \to M$ with image in S is a smooth map $N \to S$

• Integrable distribution \iff foliation: collection of disjoint connected immersed submanifolds whose union is the whole space, and can take local coordinates such that defined by $x_{(k+1)} = \ldots = x_n = 0$.

Prob. 19.3, 4, 5, 10