- normal subgroup H:GHG'EH.
 - ideal h: [g.h] Eh.

- Review: simply connected Lie group <-> Lie algebra
- Connected subgroup (may not be closed) <-> Lie sub-algebra
- Connected normal subgroup <-> ideal of Lie algebra (NEED G CONNECTED)
- Most subgroups are not normal (since quotient is no longer a group). Any subgroup for Abelian det: $GL(n)/SC(n) \longrightarrow \mathbb{R}^{\times}$. group is normal. GL(1) and SL(n) in GL(n) are normal.

(left)
Adjoint action:
$$g \sim ad = \mathcal{L}$$
.

Ad $(g) \cdot X = g \cdot X \cdot g^{-1} = X \cdot g^{-1}$

as vertice T_1G as left inv. $v \cdot g$.

 $g \xrightarrow{Adg} g$
 $g \xrightarrow{Adg} g$

$$\in \text{gl}(q)$$
) exp $(ad_x) = \sum_{i=1}^{\infty} \frac{(ad_x)^{i}}{i}$

normal
$$\Rightarrow$$
 ideal) $(\exp tX)(\exp sY)(\exp(tX)) \in H \Rightarrow Ad(\exp tX) \cdot Y \in K$

$$\downarrow d \mid ds \mid_{s=0} \Rightarrow [X,Y] \in K.$$

$$\downarrow d \mid ds \mid_{t=0} \Rightarrow f(X,Y) \in K.$$

(exp
$$\times$$
) · Y · exp $(-X) = Ad_{exp}X$ $Y = exp (ad_X) \cdot Y = \sum_{k=0}^{\infty} \frac{1}{k!} ([X,Y])^k \in h$.

(exp \times) · $(expY)$ · $(expY)$ · $(expY)$ · $(expX)$ · $(expY)$ · $(expX)$ · $(expY)$ · $(expY)$ · $(expX)$ · $(exp$

- 20-20. Let G be a connected Lie group and let g be its Lie algebra. Prove that the kernel of Ad: $G \to GL(g)$ is the *center of* G, that is, the set of elements U of G that commute with every element of G.
- 20-21. Show that the adjoint representation of $GL(n, \mathbb{R})$ is given by $Ad(A)Y = AYA^{-1}$ for $A \in GL(n, \mathbb{R})$ and $Y \in gl(n, \mathbb{R})$. Show that it is not faithful.
- 20-22. If g is a Lie algebra, the *center of* g is the set of all $X \in \mathfrak{g}$ such that [X,Y]=0 for all $Y \in \mathfrak{g}$. Suppose G is a connected Lie group. Show that \leftarrow the center of Lie(G) is the Lie algebra of the center of G.

Adg(X) = X \Rightarrow Conj g(expX) = exp (AdgX) = expX.

any h=(expX)...(expXk) \Rightarrow Conj g h = h \forall h \Leftrightarrow g \in center.

- C·Id acts trivially.

center (Lie G) = Lie (center (G)):

ad x = 0 \forall Y \Leftrightarrow Ad exptX = exp (ad $_{tX}$) = Id \Leftrightarrow exptX \in center (G) \Leftrightarrow X \in Lie (center (G)).