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e Def: M admits a transitive action by a Lie group

e Examples: sphere = O(n)/O(n-1), upper half plane = SL(2,R)/SO(2), CPAn
= U(n+1)/U(1)U(n), Gr(k,n) = U(n)/U(k)U(n-k) = GL)/(E).
Flag manifold = GL(n)/(#4) = \L(ﬂ)/U(\:.),..U(tﬂ) (Lc.. 4k, =w) l’<’a’:hlw

e G acts transitively on M <-> M = G / H for some closed subgroup H
e G acts transitively on set with closed isotropy subgp => S is a manifold.
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21-14. Let V be an n-dimensional real vector space, and let Gg (V') be the Grass-
mannian of k-dimensional subspaces of V' for some integer &k with 0 <
k < n. Let P(A¥(V)) denote the projectivization of A*(V) (see Prob-
lem 2-11). Define a map p: Gg(V) — P[h*[l'}} by

p(S)y=[vgA---Avg] if § =span(v,,..., Uk ).

Show that p 1s well defined, and i1s a smooth embedding whose image is the
set of all equivalence classes of nonzero decomposable elements of AX (V).

(It is called the Pliicker embedding.)

21-18. The center of a group G 1s the set of all elements that commute with every

element of G; a subgroup of & is said to be central if 1t is contained n the G /\' \—{ dlﬂd{z ——) ) ’0 l.
— 7 \m aCCm .

center of G. Show that every discrete normal subgroup of a connected Lie
group is central. [Hint: use the result of Problem 7-8.] Loan ,

21-19. Use the results of Theorem 7.7 and Problem 21-18 to show that the funda- ~

L 4
mental group of every Lie group is abelian. You may use without proof the 'LTl' (G) == ’\T {.ig ( G WA  ~N—

fact that if 7: &G — G 1s a umiversal covering map, then the automorphism . —
group Aut, (G) is isomorphic to 7,(G, e) (see [LeeTM, Chap. 12]). digwte N |
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