$$
\begin{aligned}
g l(2 n, \mathbb{R}) \supset 5 l(2 n, \mathbb{R}) & \xlongequal{\supset} \stackrel{50(2 n, \mathbb{R})}{\supset} \mathrm{gl(n,} \mathrm{\mathbb{C})} \supset \\
& \stackrel{5 p}{ }{ }_{5 p}(2 n, \mathbb{R})
\end{aligned}
$$

Lie (G):

1. $\mathrm{gl}(2 n, \mathbb{R})$: all matrices.
2. $\mathfrak{s l}(2 n, \mathbb{R}): \operatorname{tr}(X)=0$. Obtained by taking $\left.\frac{d}{d t}\right|_{t=0}$ on $\operatorname{det} A(t)=1$ where $A(0)=\operatorname{Id}$ and $\left.\frac{d}{d t}\right|_{t=0} A(t)=X$.
3. $\mathfrak{s o}(2 n, \mathbb{R}): X=-X^{T}$.
4. $\mathfrak{g l}(2 n, \mathbb{C})$: all complex matrices.
5. $\mathfrak{s p}(2 n, \mathbb{C})$:

$$
\left(\left(\begin{array}{cc}
0 & -I d \\
I d & 0
\end{array}\right) X\right)^{T}=\left(\begin{array}{cc}
0 & -I d \\
I d & 0
\end{array}\right) X
$$

6. $\mathfrak{u}(n): X=-X^{*}$.
7. $\mathfrak{s u}(n): X=-X^{*}$ and $\operatorname{tr}(X)=0$.

Lie derivative:

$a d(X) \cdot Y=[X, Y]=\left.\left.\frac{d}{d t}\right|_{t=0} \frac{d}{d s}\right|_{s=0} \exp t X \exp s Y \exp (-t X)$
For $\operatorname{gl}(2 n, \mathbb{R}): X Y-Y X$.
Adjoint action on $\mathfrak{g}=\operatorname{Lie}(G)=T_{1} G$ in general: $A d(g) \cdot Y=\left.R_{g^{-1}} \cdot Y\right|_{g}$.
For $\operatorname{gl}(2 n, \mathbb{R}): g Y g^{-1}$.
$a d(X)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}(\exp t X)$.
$\operatorname{Ad}(g)$ can be understood as right multiplication by g^{-1} on (left-invariant) vector fields. Denote
$\operatorname{Ad}(g) \cdot Y=Y \cdot g^{-1}$. Obvious that
$\operatorname{Ad}(g \cdot h)=\operatorname{Ad}(g) \circ \operatorname{Ad}(h)$.
$\operatorname{Ad}(g) \cdot[X, Y]=[\operatorname{Ad}(g) \cdot X, \operatorname{Ad}(g) \cdot Y]:$
$\operatorname{Ad}(g) \cdot[X, Y]=\left.\frac{d}{d t}\right|_{t=0}(Y \cdot \exp -t X) \cdot g^{-1}=\left.\frac{d}{d t}\right|_{t=0}\left(Y \cdot g^{-1}\right) \cdot$
$=\left.\frac{d}{d t}\right|_{t=0}\left(Y \cdot g^{-1}\right) \cdot\left(\exp \left(-t X \cdot g^{-1}\right)\right)=[\operatorname{Ad}(g) \cdot X, \operatorname{Ad}(g) \cdot Y]$
Killing form in general: $\left\langle X_{1}, X_{2}\right\rangle=\operatorname{tr}\left(\operatorname{ad}\left(X_{1}\right) \circ \operatorname{ad}\left(X_{2}\right)\right.$ on $\left.\mathfrak{g}\right)$.

For $\operatorname{gl}(n, \mathbb{R}): 2 \mathrm{n} \operatorname{tr}\left(X_{1} X_{2}\right)-2 \operatorname{tr}\left(X_{1}\right) \operatorname{tr}\left(X_{2}\right)$.
Thus it is $2 \mathrm{n} \operatorname{tr}\left(X_{1} X_{2}\right)$ for $\mathfrak{s l}(n, \mathbb{R})$ which is positive definite on symmetric matrices and negative definite on skew-symmetric matrices (and hence indefinite on $\mathfrak{s l}(n, \mathbb{R})$).
Can verify by using the basis $e_{i j}$ of $\mathfrak{g l}(n, \mathbb{R})$.
$\operatorname{tr}(X \cdot)=n \operatorname{tr}(X)=\operatorname{tr}(\cdot X) ; \operatorname{tr}\left(X_{1} \cdot(-) \cdot X_{2}\right)=\left(\operatorname{tr} X_{1}\right)\left(\operatorname{tr} X_{2}\right)$.
For $\mathfrak{s u}(n): 2 \mathrm{n} \operatorname{tr}\left(X_{1} X_{2}\right)$. Verify in a similar way. This is negative definite since $X_{2}=-X_{2}^{*}$.

Adjoint action always preserve the Killing form:

$\operatorname{tr}\left(\operatorname{ad}\left(X_{1}\right) \circ \operatorname{ad}\left(X_{2}\right)\right)=\operatorname{tr}\left(\operatorname{ad}\left(\operatorname{Ad}(g) \cdot X_{1}\right) \circ \operatorname{ad}\left(\operatorname{Ad}(g) \cdot X_{2}\right)\right)$.
$\operatorname{ad}\left(\operatorname{Ad}(g) \cdot X_{1}\right) \circ \operatorname{ad}\left(\operatorname{Ad}(g) \cdot X_{2}\right) \cdot Y=\left[\operatorname{Ad}(g) \cdot X_{1},\left[\operatorname{Ad}(g) \cdot X_{2}, Y\right]\right]=\operatorname{Ad}(g)\left[X_{1},\left[X_{2}, \operatorname{Ad}\left(g^{-1}\right) \cdot Y\right]\right]$
$=\operatorname{Ad}(g) \circ \operatorname{ad}\left(X_{1}\right) \circ \operatorname{ad}\left(X_{2}\right) \circ \operatorname{Ad}(g)^{-1}$
whose trace equals to $\operatorname{tr}\left(a d\left(X_{1}\right) \circ a d\left(X_{2}\right)\right)$.

Examples of Lie homomorphisms:

1. det: $G L(n, \mathbb{C}) \rightarrow \mathbb{C}^{\times} . \operatorname{Ker}=S L(n, \mathbb{C})$.
2. $\mathbb{R} \rightarrow S O(2)$ rotation by $\theta \in \mathbb{R}$.
3. $A d: G \rightarrow G L(\mathrm{~g})$. Correspondingly $a d: g \rightarrow g l(g)$ is a Lie algebra homomorphism.

Moreover $\operatorname{Ad}(\mathrm{g}): \mathrm{g} \rightarrow \mathrm{g}$ is a Lie algebra homomorphism.
4. $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$ by acting on $\mathfrak{s u}(2)$ (space of skew-Hermitian matrices) by $g X g^{-1}$. The adjoint action preserves the Killing form which is just the standard metric (up to scaling).
$S U(2) \cong \mathbb{S}^{3}$: Identify $\alpha+\beta j \in \mathbb{H}$ as $\left(\begin{array}{cc}\alpha & \beta \\ -\bar{\beta} & \bar{\alpha}\end{array}\right)$. Then $S U(2)=\left\{|\alpha+\beta j|^{2}=1\right\} \subset \mathbb{H}$.
Conjugate transpose is quaternionic conjugation.
Matrix multiplication is quaternionic multiplication.
$\mathfrak{s u}(2)$ is identified as $\operatorname{Im} \mathbb{H}$.
The adjoint action is $u x u^{-1}=u x \bar{u}$.
The homomorphism is 2:1. Consider preimage of Id: $u x u^{-1}=x$ for all $x \in \operatorname{Im} \mathbb{H}$. Then $u \in \mathbb{R}$. But $|u|^{2}=1$, and hence $u= \pm 1$. Indeed $\pm u$ maps to the same rotation in $S O(3)$. Hence $S O(3)=\mathbb{S}^{3} / \pm=\mathbb{R} \mathbb{P}^{3}$.
Note that $u x \bar{u}$ fixes u and \bar{u}, and hence $\frac{u-\bar{u}}{2} \in \operatorname{Im} \mathbb{H}$. This is the axis of rotation. Normalize $\frac{u-\bar{u}}{2}$ to h. Then $u=\cos \theta / 2+h \sin \theta / 2$ for some θ. Then $u x \bar{u}$ is rotation by θ. For instance take $h=i$, then $u x \bar{u}=e^{i \theta / 2}(a i+b j+c k) e^{-\mathrm{i} \theta / 2}=a i+e^{i \theta}(b j+c k)$ which is rotating the $\{j, k\}$-plane by θ.
Thus the homomorphism is surjective.
5. Given a Lie homomorphism $\Phi: G \rightarrow H$, have the tangent map $\phi: \mathfrak{g} \rightarrow \mathfrak{h}$ with $\Phi \circ \exp _{G}(\mathrm{X})=\exp _{\mathrm{H}^{\circ}} \phi(X)$.

Consider $\Phi: \operatorname{SU}(2) \rightarrow \mathrm{SO}(3), g \mapsto \operatorname{Ad}(g) . \quad \phi(X)=\operatorname{ad}(X)=[X,-]$.
Explicit: take the basis $E_{1}=\frac{1}{2}\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right), E_{2}=\frac{1}{2}\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right), E_{3}=\frac{1}{2}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ of $\mathfrak{s u}(2)$. Then
$\left[E_{1}, E_{2}\right]=E_{3},\left[E_{2}, E_{3}\right]=E_{1},\left[E_{3}, E_{1}\right]=E_{2}$. Thus
$\operatorname{ad}\left(E_{1}\right)=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right), \operatorname{ad}\left(E_{2}\right)=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right), \operatorname{ad}\left(E_{3}\right)=\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
Exercises. (Section 3.9)
10. Show that there is a linear isomorphism $\phi: \mathfrak{s u}(2) \rightarrow \mathbb{R}^{3}$ such that $\phi([X, Y])=\phi(X) \times \phi(Y)$ (the cross product for \mathbb{R}^{3}).
11. Show that $\mathfrak{s u}(2)$ and $\mathfrak{s l}(2, \mathbb{R})$ are not isomorphic Lie algebras.

