
Simple Lie algebra: dim 2 and	the	only	ideals	are	 0 	and	itself.
Have	classification	by	Dynkin	diagram.

For	instance,	 , is	simple:	take	the	basis	
0 1
0 0

, 	 0 0
1 0

, 1 0
0 1

.

, 2 , , 2 , , .

Suppose  is in the ideal.   , 2 .   , , 2 .  If  0, then X is in the 
ideal.  Then  , , , 2 imply that H and Y are also in the ideal which has to be  2, .

The case  0: do the same argument for  , , , then the ideal is  2, unless  0.
The case  0:  , 2 , , 2 implies  the ideal is  2, unless  0.  The ideal is {0} if 

0.

Commutator ideal:  , Span , : , ∈ .

An	ideal	is	in	particular	a	Lie	subalgebra.
Keep	on	taking	commutator	ideals,	get	 , , ⊂ ,… called	derived	series.
Solvable:	 0 for	some	j.
If	 is	simple,	 for	all	j.

Levi	decomposition:	any	Lie	algebra	is	the	semi‐direct	product	of	a	solvable	ideal	and	a	semisimple	
subalgebra.

Similar	concept:	 , , , , … , ⊂ .		Sequence	of	ideals	called	lower	central	series.

Nilpotent:	 0 for	some	j.
⊂ .		Hence	nilpotent	implies	solvable.

For	instance,	the	Lie	algebra	of	nilpotent	upper	triangular	matrices	 is	nilpotent	 and	hence	solvable .
Can	take	the	basis	 , ,	 .		Then	

, , , 0 if  and  , if  .

is	spanned	by	 , for	 and	hence	 0 .

The	Lie	algebra	of	upper	triangular	matrices	 is	solvable	but	not	nilpotent.
Can	take	the	basis	 , , , ,	 , , … , , .		Similar	as	above	and	 , , , 0.

.  So  0.		But		 for	all	 1.

Recall	that	any	Lie	group	homomorphism	Φ: → corresponds	to	a	linear	map	ϕ: → .		 In	the	proof	that	
a	continuous	homomorphism	is	smooth.
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Since	Φ Φ Φ Φ ,	 ∘ Ad Ad Φ ∘ .
Then	 ∘ ad ad ∘ ,	that	is	 , ϕ , ϕ .
Thus	Lie	group	homomorphism	corresponds	to	a	Lie	algebra	homomorphism.

In	particular	take	Φ Ad: 	 → .		It	corresponds	to	the	Lie	algebra	homomorphism	 ad: → .
Hence	

	
ad	X

!
.

Thus	 	 commutes	with	 	 if	 , using	that	exp	∘ Ad g Conj g ∘ exp	 because	
conjugation	pushes	a	left	invariant	vector	field	to	a	left	invariant	one .

Take	 , .		Then

	 	
	 ⋅
!

, , … , ,

!
.

If	G	is	connected,	then	 is	determined	by	 :
Recall	that	any	element	 ⋅ … ⋅ if	G	is	connected.		Φ ⋅ … ⋅ .
In	particular	 commutative	implies	(connected)	G	commutative.		 ad Id,	which	is	the	tangent	map	for	
both	 and	Id.

Any	real	Lie	algebra	 whose	underlying	vector	space	is	over	 	can	be	complexified.		For	instance,
, ⊗ ≅ , ≅ 	 ⊗ .

Thm:	
Suppose	G	is	connected.		There	exists	a	one‐to‐one	correspondence	between
connected	normal	Lie	subgroups	and	ideal	of	Lie	algebras.

Recall:	H	is	normal	means	 .
Lie	subgroup	means	a	subgroup	which	is	also	an	immersed	submanifold.

Proof:	
Already	have	correspondence	between	connected	Lie	subgroups	and	Lie	subalgebras	 Frobenius	theorem .		
Don't	need	G	connected	for	this.

=> ) For  ∈ , ∈ ,	exp exp exp ∈ .		Taking	derivatives	gives	 , ∈ .

<= )  ⋅ ∑ 	 ⋅

!
∈ .

Since	exp	∘ Ad Conj ∘ exp,	 ⋅ ⋅ ∈ .
Since	H	is	connected,	any	 ⋅ … ⋅ .		Hence	 ⋅ ⋅ ∈ .
Since	G	is	connected,	any	 ⋅ … ⋅ .		Hence	 ⋅ ⋅ ∈ .

Prop:
If	 → induces	an	isomorphism	 → and	H	is	simply	connected,	then	 → is	an	isomorphism:
→ induces	an	isomorphism	on	the	tangent	spaces	together	with	left	multiplications	implies  → must	
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be	a	covering	map.		If	H	is	simply	connected,	then	 → must	be	a	diffeomorphism.

Thm:
If	 is	simply	connected,	then	any	 → integrates	to	 → .

Proof:
Consider	the	graph	of	 → which	is	a	subalgebra	in	 .		It	corresponds	to	a	Lie	subgroup	 in	 .		
The	first	projection	 → is	an	isomorphism	and	hence	invertible:
the	corresponding	map	 → is an isomorphism, and  is simply connected.
Thus have  → .		Compose	it	with	the	second	projection	 → to	get	 → .

Conclusion:
∈ all  … ∈ if	G	is	connected

Lie	subalgebra ‐ connected	Lie	subgroup	 which	can	be	immersed
ideal ‐ connected	normal	Lie	subgroup if	 is	connected
exp	 ad ‐ Ad exp
, 0 ‐ gh hg if	G	is	connected

group	homomorphism ‐ algebra	homomorphism if	G	is	simply	connected

														

Give	an	example	of	 ⊂ , and	 ∈ , such	that	 ∈ but	 ∉ Lie .4.
Let	 ∈ , which	has	an	eigenvalue	in	 .		Show	that

cos sin
sin cos

for	some	invertible	matrix	C.

21.

Exercises.		(Section	3.9)
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